
Why I Love the OMG:

The Emergence of a Business Object Component Architecture

Jeff Sutherland

SVP Engineering and Product Development, IDX Systems Corporation

Chair, OOPSLA Workshop on Business Object Design and Implementation

Abstract

Object technology, a necessary but not sufficient condition for software reuse, requires an
infrastructure that supports plug compatible Business Object Components for fast and
flexible delivery of new or enhanced products to the marketplace. This paper is a
retrospective view on key conceptual issues driving the standardization of a Business
Object Component Architecture (BOCA) within the Object Management Group (OMG).
The seamless integration of BOCA with the Unified Modeling Language (UML), a
standardized Meta-Object Facility (MOF), and an emerging CORBA Component
specification is essential to design-driven generation of runtime components into
heterogeneous distributed object frameworks. BOCA standardization can enhance
software productivity with plug compatible, reusable components, the holy grail of object
computing.

Introduction

The Object Management Group (OMG) Business Object Domain Task Force (BODTF)
has been the focal point for standardization of a Business Object Component Architecture
(BOCA).1 The emergence of this standard could have far reaching effects on worldwide
software development. Priming this effort required joint work of the OMG BODTF, the
Accredited Standards Committee X3H7 Object Information Management, and their joint
sponsorship of the OOPSLA Workshop on Business Object Design and Implementation
for the years 1995-98. Completing BOCA standardization required the united efforts of
over 800 of the leading software development companies and user organizations
worldwide--the members of the OMG.

This paper serves as a retrospective on some of the key conceptual issues driving BOCA
standardization and the global effort to build a unified set of standards for component
based systems throughout the software development life cycle. In mid-1998, BOCA is
moving through the final OMG vote for adoption. Initial tools are available that will
generate BOCA applications running in the IBM San Francisco Java Framework from an
annotated UML design document. The same tools will generate Enterprise Java Bean and
CORBA Component applications, as soon as frameworks for these emerging
technologies become available.

Background: X3H7, OMG BODTF, and the OOPSLA Business Object Workshop

X3H7 Object Information Management2

The International Standards Organization (ISO) has approved a new work item to refine
and extend the current international standard Reference Model for Open Distributed
Processing (RM-ODP).3 X3H7 (now NCITS Technical Committee X7: Object
Information Management) the U.S. technical committee for this international work item,
is tasked with the following:

• Refine the enterprise language, explicating the relationship of an enterprise
specification of a system to other RM-ODP viewpoint specifications of that system,
so as to enable the RM-ODP to be used for specification of object-based application
architectures.

• Ensure that the enterprise language together with the other viewpoint languages is
suitable for the specification of a concrete application architecture to fill a specific
business need.

• Measure success with a demonstration of the use of the RM-ODP viewpoint

languages to specify a concrete application architecture.

OMG Business Object Domain Task Force (BODTF)4

With a membership of over 800 software vendors, software developers and end users,
OMG’s goal is to establish CORBA as standard middleware through its worldwide
standards specifications: CORBA/IIOP, Object Services, Internet Facilities and Domain
Interface specifications. Established in 1989, OMG's mission is to promote the theory and
practice of object technology for the development of distributed computing systems. The
goal is to provide a common architectural framework for object oriented applications
based on widely available interface specifications.

The Object Management Group has chartered the BODTF to facilitate and promote:

• the use of OMG distributed object technology for business systems

• commonality among vertical domain task force standards

• simplicity in building, using, and deploying business objects - for application
developers

• interoperability between independently developed business objects

• the adoption and use of common business object and application component
standards

And to issue requests, evaluate responses and propose for adoption by the OMG
specifications for objects, frameworks, services and architectures applicable to a wide
range of businesses.

OOPSLA Workshop for Business Object Design and Implementation
5

OOPSLA (Object-Oriented Programming, Systems, Languages, and Applications) has
been the leading object technology conference for more than a decade. There are a wide
variety of participant-driven workshops, tutorials, invited speakers, panels, debates, and
technical papers capturing the latest in both research and in development experiences.

The OOPSLA Workshop on Business Object Design and Implementation is jointly
sponsored by X3H7 and the OMG BODTF for the purpose of soliciting technical position
papers relevant to the design and implementation of Business Object systems.

The goals of the OOPSLA Business Object Workshop are to:

• Enhance the pattern literature on the specification, design, and implementation of
interoperable, plug and play, distributed Business Object Components.

• Clarify the design and implementation of object-oriented systems, particularly
systems in which workflow patterns and the REA accounting model are basic
building blocks for production business systems.

• Contribute to emerging architectures for Intranet/Internet/Extranet applications,
particularly those applications that integrate business objects, web servers, object and
relational databases, and new approaches to client delivery of content.

• Pursue issues developed in previous workshops stimulated by papers on
heterogeneous distributed workflow systems. Specify business object solutions to
mobile agents, process engines, and systems that exhibit emergent behavior. Cross-
fertilize business object design concepts with experience from the field of complex
adaptive systems.

• Provide explicit experience reports on business object systems developed and in
production.

Why Business Object Component-Based Development?

For many years members of X3H7 and the OMG BODTF have been intensely aware that
the global market has become an highly competitive environment moving at an
accelerating rate of change. Gradual improvements in productivity and enhancements in
quality are no longer enough to maintain market leadership. Time to market of new
products and rapid evolution of old products and applications are key success factors.
This awareness led these groups to join forces in 1995 to initiate a radical change in
software development environments, a changed that would take years to specify and
decades to implement.

Accelerating product evolution requires reinventing the processes that bring products to
market and eliminating processes that do not add value. Since modern corporations have
embedded many rules and procedures for product delivery in computer systems, the
software applications that run the business must undergo significant change. To gain the
strategic advantages of speed and flexibility, corporations must remodel their business
processes, then rapidly translate that model into software implementations. The rapid
adoption of the Internet since 1995 has accelerated the pace of software evolution

dramatically and pushed it in the direction of global, distributed object computing, the
target environment for BOCA.

Business Process Reengineering (BPR) sets the stage for continuous evolution of
business processes to meet rapidly evolving business requirements. Implementation of
software systems that support BPR requires Business Objects that can both simulate
corporate procedures and translate smoothly into software objects. Well-designed
Business Object implementations can be easily modified as the business changes. In
particular, if software implementation can be automated from design, change becomes
easy, rather than difficult or impossible.

Reorganization of business processes is most effective when there is a well understood
model of the existing business, an evaluation of alternative future models against the
current business, and when a model-driven approach is used to realign the business
strategy, processes, and technology. A multilayered, object-oriented blueprint of the
enterprise can drive the refocusing, realignment, and reorganization of the business.6

Current attempts to implement this process under the rubric of business process
reengineering (BPR) have been largely ineffective due to difficulties in changing
monolithic organizations, processes, and information systems.

Time

Log
 Performance/$
 Capability/$

Componentized Hardware
2x/year

Application Software
(Function Points/Person month)
 < 10x/30 yrs

IT

OBJECTIVE

1965 1995

20x

230x

Figure 1: Hardware Price/Performance vs. Software Price Performance
7

Figure 1 demonstrates that enhancing the productivity and performance of integrated
circuits (IC) has led to exponential growth in computing power over the past thirty years.
This has been driven by “the observation made in 1965 by Gordon Moore, co-founder of

Intel, that the number of transistors per square inch on integrated circuits had doubled

every year since the integrated circuit was invented. Moore predicted that this trend

would continue for the foreseeable future. In subsequent years, the pace slowed down a

bit, but data density has doubled approximately every 18 months, and this is the current

definition of Moore's Law, which Moore himself has blessed. Most experts, including

Moore himself, expect Moore's Law to hold for at least another two decades.”8

Moravec9 has more recently observed that information handling capacity in computers

has been growing about ten million times faster than it did in nervous systems during our
evolution. The power doubled every two years in the 1950s, 1960s and 1970s, doubled
every 18 months in the 1980s (Moore's Law), and is now doubling each year.

Custom chip development, which is largely software based, has followed Moore’s Law
due to the heavy capital investment in tools and technology common in the IC chip
industry. However, this has not led to comparable gains in business application software
development, largely due to the lack of automated software construction from design
artifacts and failure to achieve large scale reuse of software components in business
applications.

Developing an understanding of the reasons for rapid advancements in clarifies the
direction that application software development must take to achieve comparable results.
The software productivity problem is a core issue for the X3H7 and the OMG BODTF as
they assess how to maximize the impact of software standards development on the
worldwide business community.

X3H7 Contributions

Document X3H7-93-2310, Objectives and Operations, provided guidelines for work of the
X3H7 during the period 1993-96.

• Develop liaisons with groups working on object oriented standards and know
what they are doing.

• Complete the Object Model Features Matrix document that defines in some
detail the characteristics of object models being proposed by different groups.

• Develop an X3H7 reference document based on the Features Matrix to present
to targeted groups working on object model standards.

• Based on importance of each liaison group and the timing of each group in the
standards development process, present formal proposals to these groups to
facilitate harmonization of object model standards and enhance
interoperability of distributed object systems.

• Develop scenarios of problems arising in the interaction of object systems to
clearly illustrate the technical issues involved in distributed object
interoperability.

The majority of members of X3H7 are also members of the OMG and committed to
seeing relevant standards implemented by industry bodies. Under the editorship of Frank
Manola, the Object Model Features Matrix11 developed an analysis of issues involved in
harmonizing object models. This showed that competing object models provided not only
different structures, but often different semantics underlying the concepts that supported
these structures.

Interoperability of object models requires understanding the structure and semantics of
commonly used object-oriented frameworks and the interfaces between these
development frameworks. Object models must interoperate within widely adopted
frameworks and the number of frameworks should be few. An X3H7 consensus was
reached in 1994 that 80% of new object-oriented development would be done in three
application languages (Smalltalk, OO COBOL, and C++) and that these applications
would communicate through a Business Object Request Broker to four external
environments – X3H2 SQL standard databases, ODMG standard object databases,
Microsoft’s COM environment, and the OMG CORBA environment. Figure 2 illustrates
the views of X3H7 at that time.

Figure 2. ANSI X3H7 Standardization Targets. 24 Sep 1994
12

The widespread adoption of the Internet since 1995 has only accentuated the need for
interoperable, distributed object standards and added Java to the list of widely used
development languages. One of Java’s primary benefits is enhancing interoperability of
distributed systems, a primary objective of X3H7.

Even before the rapid growth of the Internet, there was a consensus that application
developers should be shielded from the detailed of these implementation environments.
They should be able to use Object-Oriented Analysis and Design (OOAD) tools to build
an application in a standard notation. OOAD tools should be able to import legacy
models from CASE tools. The application model and all of its artifacts should be stored
and versioned in an object repository and the runtime application binary objects should
be generated from the repository to conform to standard component interface
specifications. Request broker technologies should provide automated mapping between
development frameworks. Figure 3 shows the X3H7 conceptual view of this problem.

Figure 3. ANSI X3H7 Standardization Targets. 24 Sep 1994.

X3H7 members participating in OMG and other standards bodies began driving the
agenda of object model harmonization in multiple organizations. They were key technical
contributors to the ISO standard RM-ODP, the distributed processing reference model
that OMG technologies must conform with in accordance with agreements between ISO
and OMG. They also agreed to co-sponsor, with the OMG BODTF, a Business Object
Design and Implementation Workshop at the OOPSLA’95 Conference on object-oriented
programming, systems, languages, and applications, in order to draw research
contributions into the drive for common Business Object Component standards.

OMG BODTF Contributions

In 1994, Sutherland13 began discussing his findings on key issues in building life cycle
object-oriented development environments for business objects within standards
organizations, including the OMG Business Object Management Special Interest Group
(BOMSIG, now BODTF). Simultaneously, Cory Casanave, now Chair of the OMG
BODTF, edited the BOMSIG Business Application Architecture White Paper14 and later
OMG Common Facilities RFP4: Business Object Facility and Common Business
Objects.15

Business Objects as Reusable Components

Objects are not enough to gain the benefits possible with object technology. Only plug
compatible, larger grained components can achieve a productivity breakthrough. Early
adopters of object technology asserted that packaging software in object classes would
allow software to obtain the benefits of Moore’s Law seen in IC chip fabrication16 and
some projects have achieved major productivity benefits. For example, a Maintenance
Management System at General Motors originally written in PL/I was rewritten under

EDS contract in Smalltalk and achieved a 14:1 increase in productivity of design, coding,
and testing.17 Detailed analysis of this project showed 92% fewer lines of code, 93%
fewer staff months of effort, 82% less development time, 92% less memory needed to
run, and no performance degradation.

While there are many isolated projects that used object technology to achieve dramatic
productivity gains during the past decade, this success has not translated into broad
improvements across the software industry. In 1995, META Group reported that,
“despite the promise of reusable objects, most IT organizations have realized a scant
10%-30% productivity improvement from object technology (OT).” Failure to achieve
larger productivity gains was attributed to:

• Data-centric, task-oriented application development.

• Methodologies and cultures that do not promote reusability.

• Few linkages between BPR-defined business processes and IT support initiatives.18

Business Objects are designed to support a clearly defined relationship between BPR-
defined business processes and software implementation of these components. Using an
object-oriented development methodology yields quick time to market and object-
oriented design allows for rapid evolution of Business Objects in response to market
conditions. The bottom line is that object technology is a necessary, but not sufficient
condition for large returns on investment. It must be combined with focus on delivering
Business Object Components that enable fast and flexible delivery of new or enhanced
products in the marketplace.

The Need for a Business Object Component Architecture

As business models are renewed, software architectures must be transformed. A
Business Object Component Architecture (BOCA) is an effective solution for dynamic
automation of a rapidly evolving business environment.

Dynamic change requires reuse of chunks of business functionality. A BOCA must
support reusable, plug-compatible business components. The two primary strategies now
being used for implementing client/server systems to support reengineering of business
processes are visual 4th Generation Languages and classical object technology. While
both of these approaches are better than COBOL, neither of them can effectively
implement plug and play Business Object Components.

Building Business Object Components

A group of objects is the ideal unit of reuse. These groups of objects should behave as a
higher-level business process and have a clearly specified business language interface.
Business Object Components are encapsulated with a protocol that allows efficient
communication with other objects on the network.Work on the concept of Ensembles19

has shown that there is a minimal design specification for a plug compatible component.

Consider a typical client/server application like an order entry system. This system takes
a Purchase Order as input and produces a validated order as output. The internals of this
component should be a black box to the external world. The resulting order is input for
another subsystem or, alternatively, an exception condition is raised if the Purchase Order
is not valid for processing (see Figure 4).

Process PO

Manufacturing/Shipping Order

Exceptions

Figure 4: An Order Entry Business Object

To support plug-compatible reuse, a business component needs encapsulation in the
following ways. The external world must not know anything about component internals,
and the internals must not know anything about external components, other than allowing
interested objects to register for notification of specific events or exception conditions.

The internals of a business component are made of other encapsulated business
components. For example, when a Purchase Order passes through the membrane of the
Order Entry business object, an internal component must see it, validate it, look up
customer information, inventory availability and catalogue pricing, and build an order
that is consistent with business rules and procedures. Each of these tasks is accomplished
by embedded components, many of them communicating with external data sources.

External databases must be encapsulated as business objects components or reuse will not
be easily achieved. There must be a database access component that causes values from
any kind of database to materialize as objects inside the business component. Whether
object-oriented, relational, or other database access is required, a set of class libraries
designed to automate this interface will result in a major savings in development
resources.20

An Order Entry business object will typically have multiple user interfaces. A clerk may
be taking the order over the phone, entering purchase information, validating customer
records and credit data, and reviewing an order for consistency and customer acceptance.
Other users may require different presentation screens. User interfaces are difficult and
time consuming to build at the code level. Today, much of this process can be
automated. They should be encapsulated as separate objects that communicate by
message passing to the Order Entry component..

A simple Order Entry client/server component has at least three large-grained
components, one or more presentation objects, a business component that models the
business process, and a database access component that shields the application developer
from database access languages, database internals, and network communications (see
Figure 5).

l presentation

l business model

l data access

Figure 5: Client-Server Component

Business Object programmers focus their efforts on building business components, or
large-grained Business Objects, which can be easily distributed on the network.

Distributing Business Object Components

System evolution will invariably distribute these Business Object Components to
maximize network performance and processor utilization, and to ensure proper control,
integrity, and security of information. With the widespread adoption of standards-based
Internet technologies, distributed object systems have become the norm. Business
reengineering implies implementing a distributed environment where components
encapsulating business functionality can be migrated to nodes on the network that allow
maximum flexibility, scalability, and maintainability of a Business Object Component
system.

Logical Application Physical Implementation

Figure 6: Application Business Object with Nested Client/Server Components

Business objects made up of nested components allow distribution of these components
across a network. Figure 6 shows the logical application as a coherent set of nested
client/server components. Deployment of this large-grained object may include
distributing subcomponents across multiple heterogeneous computing resources in
dispersed locations. Thus, an application designed on one processor is scattered across a
network at run time.

Developers of business information systems have taken advantage of building
applications with OLE components. At Object World in San Francisco, Allied Signal
won the Computerworld Award for best object-oriented application of 1995.21 They
reengineered the Supply Management Business Process that took 52 steps to purchase a
single part, so it now requires only three steps to complete the same transaction. The old

process required seven people and took nine weeks to produce an approved purchase
order. The new Supply Management Specialist Tool (SMST) allows one person to
complete the same process in nine minutes for established suppliers with long-term
agreements in place. In the case of new suppliers, where a Request For Quote (RFQ) is
required, the process takes nine days. Table 1 summarizes these benefits.

Table 1: Reengineering a Purchase Order Component

 Before After Improvement

Process

Steps

52 3 17.3

Staff 7 1 7

Time 9 weeks 9 min 2400

In this example, cycle time of the process is reduced 2400:1 for established suppliers, and
5:1 for new suppliers. Cost reduction is operational staff is 7:1. The impact of
improvement in business efficiency leading to greater customer satisfaction and resulting
market share is far greater than any reduced costs in operations overhead or development
time and is the prime objective for use of Business Object Component design tools to
assure success of Business Process Reengineering practice.

Despite isolated success stories, Brodie22 reported, after a survey of 201 distributed object
computing (DOC) applications worldwide, that this technology is not and will not be
ready for prime time until vendors can deliver standards based Business Object
Component frameworks. “For the moment, DOC is in its infancy and does not meet

industrial-strength requirements or the claims of its proponents… There are even very

recent claims that a major breakthrough has occurred and that a DOC renaissance is

upon us.
23

 Based on our experience, GTE has decided to halt the design, development,

and deployment of DOC technology and applications. In part this relates to our

recognition of the problems described... In part, it also relates to our pursuit of

commercial off the shelf (COTS) applications for which the vendors are largely

responsible for the issues raised... Following a significant study of and investment in

DOC technologies and methodologies, we have concluded that the benefits do not

currently warrant the costs to overcome the challenges described... The claims for

increased productivity, re-use, and lowered costs cannot be achieved with other than very

highly skilled staff who must work with immature technology and methods. We will

continue to investigate the area and observe its progress and will be prepared to take full

advantage of the technology when DOC is more mature. I look forward to a highly

competitive market for the DOC infrastructure and highly competitive products.”

The Challenge of Achieving Moore’s Law for Software

Working with Capers Jones at Software Productivity Research, Sutherland did an
analysis in 1993 using a database of thousands of projects on productivity of language
environments.24,25 This study showed that 4GL environments were twice as productive in
the real world as COBOL environments in a full life-cycle analysis.

Smalltalk had the capability of doubling the productivity of a 4GL environment, but only
if 80% reuse was achieved. Since the average amount of reuse by Smalltalkers in the
study was only 20% (not much better than C programmers at 15%) special tools needed
to be used to enable this level of productivity.

In Figure 7 below, OOAD+ is an example of a tool that guarantees 80% reuse largely
through automation, enables roundtrip engineering from design to code and back, is
tightly integrated with user interface tools that allow nonprogrammers to develop user
interfaces, and generates runtime components from design. Achieving these objectives,
consistent with the X3H7 design targets noted previously in Figure 3, doubles the
productivity of a Smalltalk environment.

The ORB bar in Figure 7 refers to an OOAD+ environment that automates the mapping
between application objects and relation database storage of these objects. Sutherland
observed that in multiple projects in heterogeneous business environments, hand coding
object/relational mapping absorbed more than 30% of development resources.

Figure 7: Moore’s Law for Software

Sutherland estimated that by 1996, it would be possible to buy 50% of an application as
off-the-shelf components, effectively doubling productivity. By 1997, early adopters
would be buying 50% of the application as external components and reusing internally
generated components for another 25% of the application, effectively doubling
productivity on an annual basis, and beginning to achieve Moore's Law for Software.
Brad Cox's vision of software as IC chips could be realized in such a component
environment.

Successes in achieving these goals have occurred on a isolated basis. At OOPSLA’98,
Zincke gave an experience report showing a production system that was developed at the
rate of 7.52 function points per person-day, an order of magnitude faster than industry

average.26 Widespread achievement of these results has been limited by redeployment of
software tools for Internet applications, effectively forcing the industry to repeat the
lessons of the last decade of Smalltalk development environments, and the lack of
standard component environments in which to build domain-based object-oriented
frameworks.

OMG BOMSIG Business Application Architecture and Common Facilities RFP-4

By mid-1995, BOMSIG has completed its second revision of a Business Application
Architecture,27 noting that “with a system comprised of a set of cooperative business

objects, the outmoded concept of monolithic applications becomes unnecessary. Instead,

your information system is comprised of semi-autonomous but cooperative business

objects which can be more easily adapted and changed. This type of component

assembly and reuse has been recognized as a better way to build information systems.”

The consensus notion of a Business Application Architecture had evolved to what is now
the standard three-tier architecture with Business Objects in the middle tier. A distinction
began to be drawn between Business Objects as entities and Business Objects as
processes (see Figure 8).

Business Application Architecture

Business
Process
Objects

Non-object
Programs and
Components

Object
Technology
Components

DBMS

Implementation

Presentation
and

Desktop

Users

Business
Objects

Figure 8: Business Application Architecture Revision 2. OMG 95-04-01

Towards the end of 1995, the Business Application Architecture concepts had evolved
into the issuance of OMG Common Facilities RFP-4: Common Business Object and
Component Interoperability Facility (later known as the Business Object Facility (BOF)).
The thrust of the RFP was to begin to build a layer on top of the OMG CORBA
infrastructure to enable a plug-and-play environment. Figure 9 became the central view
of the problem:

Enterprise specific applications

CORBA infrastructure

(specialisations of CORBA, Object services

and other Common Facilities)

Financial

common

facility

Manufacturing

common

facility

Other

common

facilities

Common business objects

Component Interoperability Facility

Figure 9: Business Application Architecture. CFRFP-4, OMG 95-12-13

The CORBA infrastructure provides an environment for communication between
distributed objects. However, 100% of a business application needs to be hand coded in
this environment. It should be possible with a component architecture to buy 80% of the
application components and only have to write 20% of the code. A Component
Interoperability Facility would provide generic superclasses for business objects.
Common business objects crossing domains would be standardized, and domain
frameworks would be developed to use both the Common Business Objects and the
Component Interoperability Facility (later the Business Object Facility (BOF).

It’s Never as Easy as it Looks or: The MOF, the BOF, UML, CDL, IDL, BOCA, and

CORBA Components

At the end of 1995, OMG Domain Task Forces where created to emphasis the importance
of user organizations and vertical domain software to the future of OMG. BOMSIG
metamorphized into the OMG Business Object Domain Task Force (BODTF) with the
authority to issue its own RFPs and Common Facilities RFP-4 evolved into BODTF
RFP-1.

The leading response to the Business Object Facility portion of BODTF RFP-1 matured,
after several collaborative efforts, into the Business Object Component Architecture

(BOCA). At time of this writing, BOCA has been approved by the OMG Architecture
Board and is in the voting process to become an OMG Adopted Technology.

In order to bring BOCA to the voting process, several phases of integration with and
definition of other OMG standards had to evolve:

It was necessary to harmonize BOCA with parallel work in multiple areas:

• UML - The Unified Modeling Language (UML) for object-oriented analysis and
design became an OMG Adopted Technology in 1997 through the united efforts of
Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI Systemhouse,
Unisys, ICON Computing, IntelliCorp, i-Logix , IBM, ObjecTime, Platinum Technology,
Ptech, Taskon, Reich Technologies, and Softeam corporations.28

• MOF - The Meta-Object Facility defines a simple meta-metamodel with sufficient
semantics to describe metamodels in various domains starting with the domain of
object analysis and design. Integration of metamodels across domains is required for
integrating tools and applications across the life cycle using common semantics. This
OMG Adopted Technology29 represents the integration of efforts currently underway
by the Cooperative Research Centre for Distributed Systems Technology (DSTC),
IBM, International Computers Limited, Objectivity, Oracle, System Software
Associates, and Unisys corporations in the areas of object repositories, object
modeling tools, and meta data management in distributed object environments.

• CORBA Components

• The current OMG RFP for CORBA Components begins, “While abstract

interfaces are at the heart of object-oriented technology, they are only one

dimension of the complex space within which distributed object applications are

designed and built. In recent years, the concept of component technology has

emerged as a more complete mechanism for expressing object-oriented software

entities and assembling them into applications. Two prominent examples of

component models are JavaBeans, and ActiveX Controls.”30

• The Gang of Four (IBM, Netscape, Oracle, and Sunsoft) initiated this effort in
1997 stating that “a component framework must provide a standard way to ask

questions at design time as well as run time about the external interfaces,

presented as methods, properties and events. The CORBA component model

must support interface composition, so that components and the applications

that use them are decoupled, and can evolve independently while maintaining

compatibility. It must be possible to pass component state and methods by

value so that native language interfaces can be mapped naturally into CORBA

distributed operations. The CORBA component infrastructure must interoperate

with existing non-proprietary component standards, such as JavaBeans. The

component framework must support the Internet deployment of multi-tier

applications, with URL naming of CORBA objects, and easy access to CORBA

objects and services from Java.”
31

• Currently, the way components are composed and "snap together" is left up to
the implementation (Java beans being one such implementation). Without this
piece there is no true "plug and play" business components. When Corba-
Components come on-line, BOCA IDL mappings can be extended to utilize
Corba components, achieving true "plug and play". Without the BOCA, Corba
components provide a way to "snap together" implementations, but no business
application architecture to snap them into.

• CDL: BOCA proposes a Common Specification Language (CDL), a way to write
down, in a textual form, business object specifications that use the meta-model.
With a way to textually express the meta-model, BOCA provides a way for writing
publishable business object standards.

• IDL: The BOCA IDL mapping capability provides the mapping from the meta-
model to OMG IDL interfaces. IDL interfaces necessarily contain technology
details that need to be shielded from the business developer but are necessary for
interoperability. Given a particular business object model, interfaces must be
expressed in a consistent way that supports the underlying framework and
interoperability. The IDL mapping specifies the form and content of business object
interfaces based on the meta-model.

• BOF Interoperability Specification – This specifies a mapping between CDL and
Corba IDL interfaces that business objects have to support and use to achieve
technical interoperability. Standardization of the BOF Interoperability Specification
depends on clarifying interfaces to CORBA services and its relation to future
adoption of a CORBA Component Specification standard.

• Corba + IDL - Distributed business objects would not be possible without the
underlying distributed object infrastructure. The Corba Meta-Model, ORB and IDL
are the basis on which the BOCA and framework is built.

• Corba Services - Supporting the framework are the library of Corba services used
by business objects in well defined ways.

BOCA Current Implementation Status

Currently, software is available from Data Access Technologies32 that will generate
business object components into the IBM San Francisco Project Java Framework. An
annotated UML designed autogenerates CDL and MOF metadata. These can be used to
generate Java classes in IBM’s proprietary framework. Enterprise Java Bean frameworks
will be available soon and BOCA will generate Enterprise Java Bean code.

OMG ORBOS is receiving responses to the CORBA Component Facility RFP. Initially,
the Gang of Four (IBM, Netscape, Oracle, and Sunsoft) proposed that this be JavaBeans
based. Multiple competing proposals are now being reconciled. When the Component
Facility is available BOCA will generate CORBA components.

Why I Love the OMG

The harmonization of multiple OMG Task Force standardization efforts in widely
disparate technologies to provide a standard infrastructure for generation of business
objects from design specifications is a monumental task. The OMG is the only
organization on the planet that can mobilize the best technical resources from over 800 of
the leading software vendors and user organizations worldwide to bring such an effort to
closure in a two year time frame.

When this effort is complete, we will have a standard analysis and design language, a
standard business specification language, a standard plug and play component
environment, a standard meta-object facility for designs, applications, and repositories,
standard interfaces for distributed object environments, and all of them will work
together. Tools will be provided to generate business systems from design into
heterogeneous distributed runtime environments. This will position the software industry
for the twenty-first century and launch the first global effort to break down the barriers to
implementing Moore’s Law for Software.

1 Data Access Technologies, Inc., Electronic Data Systems (EDS), National Industrial Information
Infrastructure Protocols (NIIIP), SEMATECH, Inc., Genesis Development Corporation, Prism
Technologies, IONA Technologies. Business Object Component Architecture (BOCA), Revision 1.1. OMG
Document: bom/98-01-07.

2
 NCITS Technical Committee H7: Object Information Management Home Page.

http://enterprise.systemhouse.mci.com/X3H7/default.html

3 Open Distributed Processing Home Page. http://enterprise.systemhouse.mci.com/WG7/default.html

4 Object Management Group Business Object Domain Task Force Home Page.

http://www.dataaccess.com/bodtf/

5 OOPSLA Workshop for Business Object Designed and Implementation Home Page.

http://www.jeffsutherland.org/oopsla98/index.html

6 Jacobson, Ivar, Maria Ericsson, Agneta Jacobson. The Object Advantage : Business Process

Reengineering With Object Technology. Addison-Wesley, 1995.

7 Digre, Tom. Business Application Components. In Sutherland J., D. Patel, C. Casanave, G. Hollowell and
J. Miller (Eds). Business Object Design and Implementation: OOPSLA'95 Workshop Proceedings.
Springer, 1997

8 pcwebopedia.com. Moore’s Law. http://pcwebopedia.com/Moores_Law.htm

9 Moravec, Hans. Robot, Being: mere machine to transcendent mind. 1998 (in press).

10 Kent, William. X3H7 Objectives and Operations. X3H7-93-023, 18 January 1993.

11
 Manola, Frank (Ed.) Object Model Features Matrix. X3H7-93-007v12b, 25 May 1997.

12 Sutherland, Jeff. ANSI X3H7 Standardization Targets. X3H7-94-35, 24 Sep 94.

13 Sutherland, Jeff. Business objects in corporate information systems. ACM Comput. Surv. 27, 2 (Jun.
1995), pp. 274 - 276.

14 Casanave, Cory. OMG Business Application Architecture White Paper. OMG bomsig/95-4-1

15 RFP4

16 Cox, Brad. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley, 1986.

17 Taylor, David. Object-Oriented Information Systems: Planning and Implementation. John Wiley &
Sons, 1992, pp. 320-322.

18 META Group, Inc. Making the Case for Use Case. Advanced Information Management, File 324, 13
February 1995.

19 Love, Tom. Object Lessons : Lessons in Object-Oriented Development Projects. SIGS Publications,

1993.

20 Sutherland JV, Pope M, Rugg K. The Hybrid Object-Relational Architecture (HORA): An Integration of
Object-Oriented and Relational Technology. Proceedings of the 1993 ACM/SIGAPP Symposium on

Applied Computing, Indianapolis, 14-16 Feb 1993. Deaton E et al (Eds) ACM Press, pp 326-333.

21 VMARK Software. Allied Signal Company wins the Computerworld Object Application Award at
Object World. Press Release, 21 August 1995.

22 Brodie, Michael. The Emporer’s Clothes are Object Oriented and Distributed. GTE Laboratories, 1997.

23 Microsoft. The Renaissance of Distributed Computing. White Paper, November 1996
(www.microsoft.com/pdc/html/p&s.htm).

24 Sutherland, Jeff. An Executive Overview to Object Technology (tutorial). Object World, Boston,
Sydney, San Francisco, Frankfurt and Executive Symposium on Object Technology, Toronto, 1995.

25 Jones, Capers, Programming Languages Table, Release 8.2. Software Productivity Research, March

1996.

26 Zincke, Gerald. How to Achieve 7.52 Function-Points per Person-Day with Object Technology.
Addendum to Conference Proceedings, OOPSLA 12thAnnual Conference, 5-9 October, 1997. ACM Press

SIGPLAN.

27 OMG BOMSIG. OMG Business Application Architecture, Revision 2. OMG 95-04-01

28 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI Systemhouse, Unisys, ICON

Computing, IntelliCorp, i-Logix , IBM, ObjecTime, Platinum Technology, and Ptech. UML Proposal to the Object

Management Group in response to the OA&D Task Force’s RFP-1, Version 1.1. OMG Document: 97-08-

11.

29 Cooperative Research Centre for Distributed Systems Technology (DSTC), IBM, International
Computers Limited, Objectivity, Oracle, System Software Associates, and Unisys. Meta Object Facility

(MOF) Specification Joint Revised Submission. OMG Document: 97-10-2.

30 OMG. CORBA Component Model Request For Proposal. OMG Document: orbos/96-06-12

31 IBM Corporation, Netscape Communications Corporation, Oracle Corporation, Sunsoft, Inc. CORBA

Component Imperatives. OMG Document: orbos/97-05-25.

32 BOCA CDL Development Kit for OMG IDL, Pre release revision 0.51. Data Access Technologies, Inc.,
1998.

