
Future of Scrum: Parallel Pipelining of Sprints in Complex Projects

Jeff Sutherland, Ph.D.
Patientkeeper, Inc., Brighton, MA, US

jeff.sutherland@computer.org

Abstract

The Scrum Agile development process was invented
to rapidly drive new product to market. Here, one of the
inventors of Scrum goes back to Scrum basics, throws out
preconceived notions, and designs Advanced Scrum using
multiple overlapping Sprints within the same Scrum
teams. This methodology delivers increasing application
functionality to market at a pace that overwhelms
competitors using a MetaScrum for release planning,
variable length Sprints, overlapping Sprints for a single
team, pre-staging Product Backlog, daily Scrum of
Scrums meetings, and automation and integration of
Product Backlog and Sprint Backlog with real-time
reporting. Administrative overhead for dozens of
enterprise product releases a year is less than 60 seconds a
day per developer and less than 10 minutes a day for
a Scrum Master. While Advanced Scrum is not for
the uninitiated, the future of Scrum is still Scrum, just
faster, better, and cooler.

1. Scrum Evolution

Evolution occurs in dynamic response to
environmental demands. Now that the Scrum community
has over 2000 Scrum Masters and tens
of thousands of projects completed, retrospection can
help guide future activities. In particular, what did you
do yesterday that worked (Scrum theory), what makes
sense to do tomorrow (Scrum evolution), and what is
blocking the way (Scrum preconceptions).

One of the influences that sparked the creation of the
Scrum Agile development process was a Harvard
Business Review paper on Japanese new product
development by Takeuchi and Nonaka [21]. A key
component of their presentation was a chart showing
product development separated into silo’s (Type A),

phases slightly overlapped (Type B), and all phases of
development overlapping (Type C). The authors viewed
Type A product development as implemented at NASA as
an outmoded relay race process. Fuji-Xerox abandoned the
NASA approach for Type B which they called “Sashimi”
because slices of work overlapped with collaboration
between phases. Type C was implemented at Canon and
Honda. Takeuchi and Nonaka envisioned Types B and C as
a Rugby approach where multiple phases of product
development are done simultaneously. Scrum is a Rugby
formation and they viewed an “all-at-once” process as
similar to a Rugby team moving down the field passing the
ball back and forth.

Type A – Isolated cycles of work

Type B – Overlapping iterations

Type C – All at once

Figure 1: Type A, B, and C strategies for delivering

product [20].

After discussing the notion of various types of
Scrum with Scrum Masters

 with development teams at Microsoft, Yahoo, Ariba,
Adobe, GE Healthcare, and other companies, it appeared
that the chart in Figure 1 can be applied to a higher level of
thinking about three types of Scrum—going beyond the
thinking of Takeuchi and Nonaka.

In a Type A Scrum, all development occurs in an
increment within the time box of Scrum iteration called a
Sprint. A side effect of this approach is downtime
between iterations when reorganizing for the next Sprint.
Nevertheless, well executed Sprints can double
productivity and repeatedly deliver projects on time,
within budget, with functionality precisely targeted to
end-user demands.

By adding product definition tasks for the next Sprint
into the current Sprint, a Type B Sprint allows work to
flow smoothly from Sprint to Sprint. Product backlog
requirements for the next Sprint are developed in the
current Sprint. This has enabled some development
organizations to deliver more working product than sales,
marketing, or customers can absorb. The development
bottleneck is eliminated and the company can adopt new
strategies and create new products that were previously
impossible to deliver.

Type C Sprint can be envisioned as overlapping
Sprints by running software releases through the same
Scrum team at the same time. This requires experienced
Scrum teams, well designed product architecture, and
automation of Product and Sprint backlogs. Throughput
can be enhanced to deliver dozens of new releases of
enterprise software annually. Competitors can be
overwhelmed and market dominance achieved.

Takeuchi and Nonaka observed that collapsing
phases of product development improved innovation,
throughput, time to market, and product acceptance. As
market pressures have evolved and changed, it is possible
to collapse Scrum Sprints to create a dramatic increase in
business opportunity.

2. Scrum Evolution in Practice

The evolution of Scrum in five companies from
1993-2001 has been described previously [16, 17]. Here
we focus on continued evolution of Scrum theory using
PatientKeeper, Inc., as an example. During 2000 we first
automated a solution for Type B Scrum. This eliminated
lost time and productivity between Sprints and, as
observed previously at Easel Corporation in 1994,
significantly increased throughput compared to
completing work only within the Sprint time box for
which it is defined.

In 2001, we began to solve the problem of multiple
projects pipelined through the same team (or set of teams)
and have been running a Type C Scrum for over four
years. This required careful automation of the Sprint
backlog with improved tools and metrics in order to
maintain team focus. Daily build processes and automated
regression testing were significantly enhanced. Our
approach to Quality Assurance (QA) was modified to
provide a small QA team for each of four to six
overlapping production software releases. Pair

programming was used sporadically and team
programming was common where many programmers
worked together around a table for the entire day. Daily
Scrum of Scrums meetings became the norm. By 2003 we
established weekly MetaScrum meetings of all company
stakeholders to review scheduled release deliveries.

The result has been delivery of production code to a
new set of enterprise customers for every Sprint with
maintenance Sprints weekly, customer enhancement
Sprints monthly and new application releases quarterly. In
2004, more than 45 enterprise releases of PatientKeeper
production software were completed, installed, and brought
live at customer sites. Many of PatientKeeper’s customers
are large multi-hospital systems like Partners
(Massachusetts General and Brigham and Women’s
Hospitals) in Boston, Johns Hopkins in Baltimore, and
Duke University Health System in North Carolina. These
clients provide an excellent test bed for scalability of a
Type C Scrum. They require a high level of product
adoption by difficult and discriminating users (physicians),
support for disparate wireless networks across an
enterprise, integration with many clinical and financial
systems in diverse IT infrastructures, and thorough testing
and certification by the customer.

3. The First Scrum – Type A

Some corporations view Type A Scrum as useful for
education and training on the pace of Scrum and
particularly suited to new Scrum teams. Its downside is that
it creates a loss of time between Sprints when the team is
reorganizing for the next Sprint.

At Easel Corporation in 1993 we initially applied Type
A Scrum to software development teams when we built the
first object-oriented design and analysis (OOAD) tool that
incorporated round-trip engineering from design to code
and back again in a Smalltalk development environment
[18]. There were six Sprints for the first product release
and the gap between Sprints took at least a week and
sometimes two weeks. As a result, we could only do 9
Sprints a year, losing 25% of our productivity as compared
to potentially running 12 Sprints per year. This loss of time
was considered a problem because survival of the company
depended on delivery of an innovative product as early to
market as possible. Each month of delay cost millions of
dollars of lost revenue and gave the competition the
opportunity to overtake us.

In addition to loss of productivity between Sprints in a
Type A Scrum, it takes time during the Sprint for
developers to get enough clarity about the user
requirements to start coding. It was often halfway through a
Sprint before developers understood the user experience
well enough to implement a solution. This created tension
between the Product Owner and the Scrum Team
concerning lack of understanding of what to do next,

substantial slippage of features into subsequent Sprints,
and dissatisfaction on the part of the Product Owner with
delays in feature delivery. This phenomenon can cut
Sprint productivity in half.

A Type A Sprint is sometimes used to pilot Scrum. It
allows systematic application of the Scrum process with
enough time to refine operations and regroup between
Sprints. It forces all-at-once type thinking as everything
has to happen for a specific Sprint within the time box of
that Sprint. Initially, the benefits in training can
overwhelm lost productivity and without the ability to
execute a Type A Scrum well, it is not possible to
effectively implement a more sophisticated process.

The benefits of Type A Scrum are:

• Total focus on iteration in process

• Ease of implementation

• Developing and understanding the pace of
Scrum

• Clearly defined iterations
The problems with Type A Scrum are:

• Loss of time to market

• Disruption of pace of Scrum because of
developer lack of understanding of the user
experience

• Loss of productivity (and market share) due
to resulting delays

4. Type B Scrum

The way to overcome loss of time to market with a
Type A Scrum is to insert tasks in a current Sprint that
stage work for a subsequent Sprint. A minimal
specification of the user experience for a feature can be
defined prior to the Sprint where it is implemented. This
allows Sprints to be executed continuously with the
Product Backlog defined and ready at the beginning of
each Sprint.

The need to start development with adequate
functional specifications was observed by MacCormack
[12] when he gathered extensive data on 29 Hewlett
Packard software projects to assess development
practices. One of the strongest productivity enhancers
noted in his correlation analysis was completeness of the
functional specification.

Regarding the use of specifications, there was a

significant relationship between the completeness of the

functional specification and productivity. There was a

weak relationship between the completeness of the

detailed design specification and defect rate (p =

0.078). The former result suggests that developers are

more productive to the degree that a complete

functional specification exists prior to coding. This is

intuitive, given that the functional specification outlines

the features that developers must complete. To the

degree that these are stated up front, developers can

focus solely on “executing” these features in code.

Agile developers use a minimum amount of
documentation and do not require completeness of the
specification to start a Scrum. McCormack found that
completeness of the design specification was not correlated
with enhanced productivity and only slightly reduced the
defect rate, consistent with Agile thinking. However, he
found a strong correlation between adequate product
specifications and productivity.

A functional specification that is complete enough for
the next iteration to allow developers to begin work
without false starts will enhance feature delivery within
Sprints and improve throughput. Although the
implementation phase is a small part of the overall cost of a
software project, the biggest resource bottleneck on a
software project typically occurs as a shortage of expert
developers whose skills are not easily transferable.
Constraint analysis shows mathematically that the biggest
bottleneck should be eliminated first [7] (just as in tuning
of a computer system) and early delivery of a functional
specification for a single increment helps eliminate the
critical development resource bottleneck.

A caveat is that Type B Scrum will not work in a
company that has not implemented a sustainable
development process. Scrum teams must decide on what
tasks can be implemented in a Sprint and who will
implement them using a normal work week as the standard
way to do business. Many companies using Scrum still
have management trying to jam more work into Sprints
than Scrum teams can deliver in an allotted time. This
results in lack of team autonomy, excessive overtime, high
defect rates, personnel burnout, and high employee
turnover. This is not an implementation of Scrum and
makes it impossible for a team to enter the hyperproductive
state for which Scrum was designed.

The key indicators that Scrum is working must be
visible in a Type A Scrum before moving to Type B:

• Team autonomy – the Scrum team is (and feels)
totally responsible for their product and no outside
agency impacts the work plan of the team inside a
Sprint. The Product Owner is part of the Scrum
and helps with product design questions and
implementation within a Sprint.

• Self-transcendence – individuals move beyond
self-gratification to focus on team performance.

• Cross-fertilization – expertise is regularly shared
across team members and no single person is a
bottleneck.

Fully loading the development queue in a Scrum at all
times without building a sustainable pace of development
will negatively impact morale. On complex development
projects, it can take a new engineer several months to come
up to full productivity. Abdel-Hamid [3] shows through
simulations of the software development microsystem that

under-resourcing increases total project cost by about
25%. If turnover is 20%, you are effectively under-
resourcing by 20%. Extrapolating from Abdel-Hamid’s
data your development team productivity may be down
15% from this alone. The personnel churn may cause
development task delay as specialized resources must be
shifted to complete them, reducing productivity even
more. If morale drives the pace of development down
further, you may cut productivity in half due to Abdel-
Hamid’s “dynamic motivation factors.”

Conversely, if Scrums are running well, pre-staging
functional specifications in the right way in a Type B
Scrum will eliminate false starts within a Sprint and
downtime between Sprints. This has more than doubled
productivity for some experienced Scrum teams. In
companies seeking to expand market share and dominate
a market segment, this advantage is absolutely
compelling.

4.1 Staging Functional Specifications for a

Type B Sprint

Maintaining the agility of the Scrum process requires
a minimalist approach to functional specification. A
minimal amount of documentation for a product feature
may be a few pages and definitely not hundreds of pages,
just enough documentation so that engineers understand
the user experience.

At PatientKeeper a product specification needs
screen shots, data requirements, workflow from screen to
screen, and business logic that must be executed. This has
been essential because all new functionality must be
prototyped and tested by physician users before
implementation. The minimum documentation required to
achieve Jacobsen’s overview of an object-oriented
analysis of the problem [10] has been an excellent
guideline. At PatientKeeper we have well educated
physicians that often serve as Product Owners. While
some of them have no formal training in software
development, they quickly learn how to elaborate use
cases in a way that define the user experience for a
physician using PatientKeeper products. In addition, these
Product Owners are action oriented, knowledgeable users,
and strongly resistant to analysis paralysis. They avoid
time spent on excess documentation, making them
excellent Agile Product Owners by inclination.

Moving to a Type B Scrum requires analysis and
design resources from the development team in order to
help the Product Owner create functional specifications
and pre-stage the Sprint backlog for the next sprint.
Members of the development team work with the Product
Owner from the beginning of requirements creation. In
the worst case, this might require 25% of Scrum
development resources during a sprint. However, it

avoids the 25% lag time between sprints. So you at least
break even on resource allocation.

The real gain from a Type B Scrum is having the
Product backlog fully loaded, prioritized, and ready for
breakdown into Sprint backlog tasks at all times. A
developer never wonders what to do next because the
queue is always full. If the Sprint backlog is automated,
team members simply logon at the beginning of the day
and self manage the queue of work in front of them on a
web page.

The Scrum Master is the leader of a Scrum
team, manages the project, and in some cases is a strong
technical contributor. The Product Owner and Scrum
Master are continuously working to peel items off
the Product backlog, initialize breakdown of Product
Backlog items into Sprint tasks, and assign tasks to a
developer’s queue. The developer decides how to order
the work or, in some cases, refines the granularity of
tasks and assigns them appropriate team members.

4.2 Product Owner as Part of the Scrum Team

The original Japanese view of a product
development Scrum created a cross-functional team
that was totally responsible for the product [21]. In
some companies, such as Individual in 1996, the
Product Owner was at every Scrum meeting. In others,
like the original Scrums at Easel Corporation in 1993-94,
the Product Owner was on the road much of the week
and was always at the Friday Scrum meetings [16, 17].

The Product Owner owns the business plan for
the product, the functional specification for the
product, the product backlog for the product, and
prioritization of the product backlog. As a member of
the Scrum s/he works side by side with the Scrum
Master to introduce product backlog items into a Sprint
where they are broken down into tasks by the team for
execution as Sprint backlog. At PatientKeeper, the
Product Owner manages the movement of tasks in and
out of the Sprint backlog in consultation with the Scrum
Master.

The best way to visualize Scrum responsibilities is to
think of a Scrum team as analogous to a high
performance car in a rally race. The Product Owner is the
navigator and the Scrum Master is the driver. The team is
the engine, the chassis, the drive train, and the wheels.
The Scrum Master follows the navigational directions of
the Product Owner precisely and drives the car
adroitly. The car and its occupants are totally
responsible for winning the race. At the end of every
Sprint there is a demo where other players can suggest
modifications to improve production in the next Sprint.

4.3 Type B Scrum Enables Hyperproductive Teams

Giving the Product Owner accountability for the

Sprint backlog builds strong Product Owners with hands
on control of the product feature and function. It
conditions the development team to move rapidly towards
the goal without analysis paralysis. A combination of a
forceful driver coupled to a strong navigator and a high
performance and reliable car wins the race. The same
phenomenon happens on sports teams when everyone
understands the plays and can execute them immediately
on demand. It allows the team to move up to a higher
level of play where the basic moves are on autopilot and
superlative moves are possible.

The first Scrum began executing Type B Scrum as
they mastered the process. They were able to enter the
“zone” using this technique, where they could deliver
functionality faster than the customers, the marketing
team, or sales could absorb product. The feeling of power
on a development team that can deliver more product than
anyone can absorb is exhilarating and allows the team to
focus on higher goals like being the best product of its
class in the industry.

Scrum was designed for this hyperproductive state, to
get ordinary developers to function as a champion team. It
only happens to about 10% of Scrums and it only starts to
happen when the organization moves to a Type B Scrum.
The doubling of throughput from a team that is already
very productive results in an organizational breakthrough.

5. Evolution of Type C Scrum

Scrum is an organizational pattern [4] that is

designed for control of an activity that is highly
unpredictable. It is useful in any context where the
activity requires constant change in direction, unforeseen
interaction with many participants, and the need to add
new tasks as work unfolds. These factors were amplified
at PatientKeeper when it received a $50M round of
venture funding in 2000.

A decision was made to become a platform as well as
application company by building a software framework
and open application programming interfaces (APIs) that
would allow integration with many development partners
on both the backend and the frontend. A web services
platform with a services oriented architecture was
selected.

In addition to a server architecture which was
Java/XML based, a cross platform software framework on
Palm and Pocket PC handheld devices was implemented
in C/C++. This framework provided open APIs and a
software development kit that allowed third party vendors
and end users to tightly integrate their mobile applications
with other applications already available on a handheld
device.

The tight integration between software components
required similar integration of software development teams
internally at PatientKeeper and externally with partners and
offshore developers. This, combined with time to market
pressure and rapid growth of new deployments in large
enterprises on a monthly basis, forced a new type of Scrum
to be implemented at PatientKeeper.

5.1 Case Study Context

PatientKeeper builds a software platform that takes

information from disparate clinical, financial, and
scheduling systems across multiple hospitals and clinics
and presents it on an intuitive user interface to physicians
using handheld devices and the web. The application
software has a four-tier architecture with four levels of data
cache:

• Primary data is stored in a clinical data repository,
often a third party system.

• Some or all data is forward-cached in a
PatientKeeper clinical repository.

• Massive multi-threading of data requests to
repositories with extensive use of in-memory
cache improves performance.

• On a handheld device, a specific physician’s data
is stored locally.

Software and data must be consistent across four tiers
at all times. This forced PatientKeeper to do totally
integrated builds multiple times per day to assure that
software in all four tiers of the architecture worked
consistently. Developers work off the latest build in a code
branch and on the latest code branch whenever possible.
Quality Assurance has to validate that all architectural
layers work together to provide consistent data to the end
user for every release.

The developer team working on this product was split
into a backend integration team, a clinical repository team,
a middleware server team, two PDA teams (Palm and
Pocket PC) and a Web team. Tightly coupling of these
teams in a daily Scrum of Scrums meeting assures that all
software is interoperable all the time.

5.2 Case Study Market Requirements

As an early-stage, venture funded company,
PatientKeeper had to establish a new product offering in
the rapidly growing mobile/wireless market. Early
customers had to be implemented as quickly as possible
with available functionality. Subsequent customers needed
to be installed as soon as possible with upgraded
functionality. The imperative was to gain market share and
achieve market dominance in a highly competitive
environment. Speed to market was used as a strategic
weapon.

The customer based rapidly evolved to multiple
hospital systems to be installed each month. Each group
of hospitals needed more extensive functionality in a
rapidly growing portfolio of applications that included
business partners with integrated back end clinical
systems, portal vendors, and handheld device application
vendors. An integrated, enhanced release for new site
requirements was required on a monthly basis.

The monthly deployment of new software releases
into new enterprise sites required rapid bug and feature
fixes for unanticipated implementation issues. This drove
PatientKeeper to weekly maintenance releases. In
addition, the PatientKeeper product roadmap required
ongoing delivery of entire new applications to the market.
The right timing for new applications was quarterly major
product releases.

5.3 Case Study Forces

Resource constraints forced every developer to
be focused 100% on building the system. Scrum
Masters and team leaders spent the majority of their
time designing and coding the system. Separate project
leaders were not an option.

High caliber developers, many with doctoral degrees,
did not want excessive administrative overhead. They felt
that project management could be automated and taken to
a new level of efficiency. They demanded a project
management system that required less than 60 seconds
per day of administrative time per developer and less
than 10 minutes per day for a Scrum Master to
provide comprehensive reporting to
management, the development team, and other
areas of the company. • Estimation was important. How were developers

going to provide valid estimates and update them
in less than sixty seconds a day?

• Planning and prioritizing takes time. How was
this going to be accomplished without impeding
development throughput?

• Architecture was critical for a platform
company. How was it going to evolve using the
Scrum process to provide flexibility, scalability,
performance, reliability, and maintainability?

• Customer requirements in the form of use cases
that could be rapidly transformed into
deliverable code were essential. Who was going
to do them and how would they be delivered?

• Weekly and monthly releases would be
packaged into Sprints that always released
production code to large enterprises at the end of
the Sprint. There are 12 months and 52 weeks in
a year, a possible 64 releases a year to be
managed with high quality. How was that
possible?

5.4 Type C Scrum Solution

The Type C Scrum Solution required several
innovations that affected all parts of the company. In effect,
the company became a Scrum company with all activities
tied to an automated data system that reflected release
planning and Scrum implementation, as well as installation,
support team, and customer feedback.

• A MetaScrum was created to allow company
leadership to manage multiple simultaneous
product releases.

• Daily Scrum of Scrums became the major Scrum
meeting.

• Quality Assurance was reorganized

• Build process ran more frequently and needed to
be more robust and easier to fine tune.

• Regression testing automation improved
significantly.

• New tools for automated data collection and
reporting were developed.

• The company became totally transparent. All data
was available to everyone in real time all the time.

Here we describe the company infrastructure required to
run a successful Type C Scrum. Many details of tools and
techniques within the development team are beyond the
scope of this paper and described elsewhere [19]

5.4.1 MetaScrum

Managing multiple simultaneous releases of software
requires regular review and fine tuning of release
schedules. Since every Sprint resulted in a production
release of software, Sprints must be carefully coordinated.

Figure 2: Simultaneous overlapping Sprints running

through a single set of development teams [6].

Weekly Sprints are maintenance fixes or minor
enhancements typically generated by issues preventing a
customer from going live or causing the system to fail
during production. Although these are highly impacted by
changing requirements, they are scheduled and committed
to customers on fixed dates.

Monthly releases are targeted as a set of customer go-
live dates that required specific enhancements for each
customer. If a new customer is added to the queue or a
customer drops out of the queue, the release might have to
be reorganized.

Quarterly releases of major functionality can only be
completed when weekly and monthly releases are on

schedule. Priorities might change during a quarter
because of market changes or new customer priorities. A
large partner such as Cerner or GE Healthcare could
highlight new demands, request acceleration of
functionality, or cause delays.

To deal with simultaneous weekly and monthly
Sprints, along with quarterly major releases, a MetaScrum
was formed at PatientKeeper led by the lead Product
Owner. This is a weekly meeting that typical takes 1.5
hours and includes the CEO and other senior
management, as well as leadership from marketing,
development, quality assurance, installation, and support.

Each release is reviewed. Sprints may be added,
changed, or deleted as appropriate. Sales staff must make
their case in this meeting for any change in product
rollout. Developers must argue for architectural resources.
Any company or customer impact is dealt with during the
meeting. For example, a change that would directly
impact multiple customers will result in an action plan
with specific people identified to talk with each customer
before the end of the day.

Having the entire company driven by a single agenda
out of the MetaScrum meeting has dramatically reduced
company communication problems, customer angst,
general churn, and confusion. Just as the Scrum meeting
has consolidated all decision making for a Sprint, the
MetaScrum meeting consolidates all decision making for
multiple Sprints. It is a key reason for PatientKeeper
success in the marketplace.

5.4.2 Scrum Team Organization

The daily Scrum meeting at PatientKeeper quickly
evolved into daily Scrum of Scrum meetings first thing in
the morning. All members of the development team are
present for 15 minute meetings. Team leaders do most of
the reporting, although any contributor may speak to the
following:

• What did each of the six integrated teams
complete in the last 24 hours? The Scrum of
Scrums leader logs what tasks were completed
and sends out an email to the company
immediately following the Scrum of Scrums.

• What blocks were found in performing tasks in
the last 24 hours? These are logged, reported,
and followed-up after the meeting.

• What tasks will be worked on today? Team
members volunteer for tasks. The Scrum
Master and the Lead Architect may help bring
focus to appropriate tasks.

© Jeff Sutherland and ADM 2004

Typical Day in a Type C Scrum

Scrum Master email at close of Scrum meeting - Friday 19 Nov

2004245g5

– getting feedback from Cerner,

– they're trying to get micro susceptibilities data into the test system

– added MAR suppression to address issue at SOM

245m

– upgrade testing this morning, should release by noon

246

– 246g1 palm released with timeout issue fixed

– 246i - post t-giving

251b2

– SUNY patched released last night / installed into SUNY test system

251d

– Mt Sinai release, should release by noon

251e

– Monaco clinicals, targeting Alverno

3.0.1 102 open PRs, 57 verification (down from 110 on Monday!)

– beta release today

Figure 3: Daily email summary after Scrum of Scrums

The Scrum of Scrums meeting takes place at the same
time and place every day. An open space was secured by
the development team for this purpose. Pair programming
is done primarily on tasks with difficult design and coding
requirements. Many of the developers stay in the open
meeting space for the entire day working together as a
group. Innovative and open cube space and a few offices
and conference rooms are provided for those who need
quiet, focused time.

Every Sprint in the Type C Scrum results in a
production code release and all Sprints produce the
ultimate demo, i.e. the software goes live and satisfies real
customers. The rapid pace of delivery of releases initially
created a Quality Assurance (QA) bottleneck. The solution
was to assign a small QA team to every release. QA was
expanded to four small teams of 2-4 people. This enables
them to work with the development team continuously on
regression testing and packaging the four top priority
releases that are functionality complete while
simultaneously doing early testing of developer code on the
others. QA is part of the Scrum of Scrums and reports on
daily status of ongoing testing.

Thus every Sprint there is a development phase to
functionality complete and a packaging phase where the
system is regression tested and all critical bugs are
eliminated. Developers and QA engineers work closely
together from beginning to end of the Sprint. In the
packaging phase, developers are focused on eliminating
bugs as fast as QA can find them and doing testing when
needed. While some view this as a mini-waterfall, it is
simply executing the Scrum prime directive – do what
makes common sense. Code must be frozen to be
regression tested prior to shipment in order to deliver a
quality product.

5.4.3 Data Collection

A user group study and focus group analysis was

performed for data collection for tasks, estimates, and
updates that would be used to automate the standard
Scrum burndown charts [16]. A wide variety of Scrum
tracking tools had been used by members of the team in
various companies over a 15 year period, none of them
considered adequate. The 60 second requirement for data
entry implied that a new application would not be
possible, because simply starting up a new application
might require 60 seconds.

The best application to use was one that developers
had to use every day, the bug tracking system. In
addition, the speed at which developers could do data
entry was dependent on the questions they were asked,
and the order in which they were asked. It was
determined that only three questions would be asked as
developers could answer them without thinking, they
could give a gut level response:

• What is the initial estimate for this task if it is a
new task?

• At this moment, how much time have you spent
on this task?

• At this moment, what percent complete is this
task?

These were the only additional data items collected
daily from developers for tasks. All other data analysis
and reporting was automated.

5.4.4 Tools for Data Collection and

Reporting
PatientKeeper uses the open source GNATS bug

tracking system [14]. Since developers needed to use the
bug tracking system daily, there was no additional time
overhead for opening the application to enter task data.

A PERL expert on the development team was
assigned to build utilities around GNATS to support
Scrum. These were addition of required data items, new
queries, minor changes to the user interface, and
automated file dumps for management reporting via
Excel.

It was decided that sprint tasks would be treated like
problem reports. This minimized new data entry
requirements and allow tasks and bugs to be packaged
together seamlessly for a release. Only three data items
were added to GNATS for developer entry:

• Initial estimate

• Days invested

• % complete
The first estimate was fixed at initial entry and could

never be changed in order to allow for accurate historical
reporting of estimates versus actual time to complete
tasks. Two additional data items were added for reporting

purposes. These are automatically calculated from the three
items above.

• Days remaining

• Actual time to complete
If the initial estimate is 2 days, for example, and no

work has been accomplished, the days remaining are 2
days. If a developer has invested 1 day and states that it is
25% complete, GNATS calculated the days remaining as 3
days. Initial estimates are automatically expanded based on
real time data.

The cumulative amount of work remaining for a
release can be obtained by anyone in the company with
access to GNATS. At PatientKeeper, that is every person in
the company. The days remaining for all tasks assigned to a
release are totaled to calculate cumulative backlog, the
number charted on a Scrum Burndown Chart. Because
there are thousands of tasks in the system and any tasked
that is touched is updated when it is touched, the
phenomenon of statistical regression towards the mean
makes the summary data on cumulative time to release
very accurate. It achieves the holy grail of accounting
software, microcosting of every activity in a company [13]
without advertising that to developers other than showing a
very accurate Burndown Chart.

This approach can be generalized to be used for
tracking of development tasks within any bug tracking
system. Ideally the tracking system integrates with the code
versioning system. Tools such as Trac [2] integrate with the
Subversion code versioning system [1] and support
comprehensive integration of development, error tracking,
and code management. These are current candidates for
upgrading the GNATS system.

5.5 Type C Scrum Rationale

As noted in our Pattern Languages of Program Design

paper [4], “it is very easy to over- or under-estimate, which
leads either to idle developer time or to delays in the
completion of an assignment. Therefore, it is better to
frequently sample the status of small assignments.”
Processes with a high degree of unpredictability cannot use
traditional project planning techniques such as Gantt or
PERT charts only, because the rate of change of what is
being analyzed, accomplished or created is too high.
Instead, constant reprioritization of tasks offers an adaptive
mechanism that provides sampling of systemic knowledge
over short periods of time. Scrum meetings help also in the
creation of an "anticipating" culture [22] because they
encourage "productive values":

• They increase the overall sense of urgency.

• They promote the sharing of knowledge.

• They encourage dense communications.

• They facilitate honesty among developers since
everyone has to give a daily status.

In a Type C Scrum, the urgency, sharing,
communications, and honesty behaviors are extended
company wide. “From the Complexity Theory
perspective [9, 8], Scrum allows flocking by forcing a
faster agent interaction, therefore accelerating the process
of self-organization because it shifts resources
opportunistically through the daily Scrum meetings.”[4]
When extending Scrum company wide, the entire
company self-organizes on a weekly basis. The following
behaviors become commonplace:

• There is never an unexpected late release as
problems are seen long before the release date.
The company self-organizes around the issues
raised in the MetaScrum.

• Changes in customer requirements are reflected
immediately in product backlog and relevant
Sprint backlog. Decisions are made to reorganize
on a weekly basis in the MetaScrum.

• Company imperatives and management changes
that affect product backlog are made only in the
MetaScrum. This eliminates most politics,
lobbying, and closed door meetings.

• Customer impact and schedule impacts are deal
with immediately in the MetaScrum at the time
of decision. The CEO, sales staff, and account
management walk out of the meeting with
assigned tasks to deal with customers affected by
decisions.

5.6 Type C Scrum Resulting Context

The move to a Type C Scrum to improve

development productivity had far reaching effects on the
company making it more flexible, more decisive, more
adaptable, and a better place to work. The same effects
commonly seen on Scrum teams were reflected
throughout the company.

Project management was totally automated. The
result is paperless project management and reporting,
largely without human intervention. Scrum execution has
become exceptionally efficient and the automated
tracking system has become mission critical.

Burndown charts have evolved to frame the entire
status of a project on one chart. The chart below
instantaneously reflects project state for Release 3.20 at a
glance to those familiar with the data. With all tasks
entered at 16 hours or less and bug fixes typically less
than a day, the aggregate number of tasks can be
monitored and downward velocity is highly predictive of
delivery date. Information is presented as follows:

1. Diamond – 320 current open – cumulative work
remaining

2. Triangle – 320 daily closed - items closed by QA
each day

3. Star – 320 total closed - cumulative closed (on
scale at right)

4. Square – 320 current verification - current total in
verification (items QA needs to test and close)

5. X – 320 daily open – new tasks opened per day

320 PR Burndown

0

20

40

60

80

100

120

140

160

180

5/
9/

20
05

5/
16

/2
00

5

5/
23

/2
00

5

5/
30

/2
00

5

6/
6/

20
05

6/
13

/2
00

5

date

P
R

 c
o

u
n

t

0

50

100

150

200

250

300

350

400

450

to
ta

l
c
lo

s
e
d

320 current open 320 current verification

320 daily 'closed' 320 daily open

320 total 'closed'

Figure 4: All-In-One Streamlined Burndown Chart

showing daily task inflow/outflow and cumulative

project churn [15].

The cumulative closed (right scale) is much higher
than the starting number of about 160 tasks (left scale). The
reason for this is that QA is finding bugs, often generating
multiple tasks that can be closed with one developer fix.
Product development is adding tasks primarily because of
customers moving in and out of the mix for installs.
Development is discovering new tasks as they flesh out
technical design. The cumulative closed tasks is an
indicator of the churn on a project and the reason why
Brooks [5] notes that development always take three times
as long as initial estimates.

Automated reporting and rapid turnaround can
radically reduce time to complete new tasks. Note the
strong downward velocity on the Burndown Chart despite
project churn.

PatientKeeper was able to move quickly into the
marketplace and achieve leadership in the healthcare
mobile/wireless market [11] through delivering over 45
production releases of the PatientKeeper Platform in 2005
for large enterprises such as Partners Healthcare in Boston,
Johns Hopkins in Baltimore, and Duke University Health
System in Durham. Gartner Group put PatientKeeper as the
leader in their “magic quadrant” for the industry segment.
Type C Scrum was a key contributor to this success.

Figure 5: Gartner Group “magic quadrant” for

healthcare mobile applications [11].

6. Conclusions

Moving to a Type C Scrum is not for the faint of

heart. It requires Scrum teams that can execute a standard
sprint flawlessly, an automated data collection and
reporting system that is easy to implement and update,
and a corporate culture that embraces change. Going to a
Type C Scrum will transform a company into an
organization where Scrum becomes mission critical for
the entire enterprise, not just software development.

Type C Scrum increases speed of development,
aligns individual and corporate objectives, creates a
culture driven by performance, supports shareholder
value creation, achieves stable and consistent
communication of performance at all levels, and enhances
individual development and quality of life. It also drives
functionality out into the marketplace at a pace that can
overwhelm competitors and achieve industry dominance.

7. References

[1] Subversion Version Control System. 2005, Tigris.org:
Open Source Software Engineering Tools.

[2] Trac Integrated SCM and Project Management. 2005,
Edgewall Software Services.

[3] Abdel-Hamid, T.K., The Slippery Path to Productivity

Improvement. IEEE Software, 1996. 13(4): p. 43-52.
[4] Beedle, M., et al., SCRUM: A Pattern Language for

Hyperproductive Software Development, in Pattern

Languages of Program Design, N. Harrison, Editor.
1999, Addison-Wesley. p. 637-651.

[5] Brooks, F.P., The Mythical Man Month: Essays on

Software Engineering. 1995: Addison-Wesley.

[6] Cohn, M., Diagram of Simultaneous Overlapping

Sprints, J. Sutherland, Editor. 2005, Mountain Goat
Software.

[7] Goldratt, E.M. and J. Cox, The goal: a process of

ongoing improvement. 2nd rev. ed. 1994, Great
Barrington, MA: North River Press. 351 p.

[8] Holland, J.H., Emergence: from chaos to order. 1998,
Reading, Mass.: Addison-Wesley. xiii, 258 p.

[9] Holland, J.H., Hidden order: how adaptation builds

complexity. 1995, Reading, Mass.: Addison-Wesley.
xxi, 185.

[10] Jacobson, I., Object-Oriented Software Engineering: A

Use Case Driven Approach. 1992: Addison-Wesley.
[11] Kleinberg, K. and T. Berg, Mobile Healthcare:

Applications, Vendors and Adoption, in Strategic

Analysis Report, R-17-7369, Editor. 2002, Gartner
Group. p. 1-44.

[12] MacCormack, A., et al., Exploring Tradeoffs Between

Productivity and Quality in the Selection of Software

Development Practices. IEEE Software, 2003(Sep/Oct):
p. 78-85.

[13] McCarthy, W.E., The REA Accounting Model: A

Generalized Framework for Accounting Systems in a

Shared Data Environment. The Accounting Review,
1982. LVII(3): p. 554-578.

[14] Osier, J.M., B. Kehoe, and Y. Svendsen, Keeping

Track: Managing Messages with GNATS, The GNU

Problem Report Managment System Version 4.0. 2002,
Free Software Foundation.

[15] Salitsky, B., Scrum Burndown Chart, Release 3.20.
2005, PatientKeeper, Inc.: Brighton, MA.

[16] Schwaber, K. and M. Beedle, Agile software

development with scrum. Series in agile software
development. 2002, Upper Saddle River, NJ: Prentice
Hall. xvi, 158 p.

[17] Sutherland, J., Agile Can Scale: Inventing and

Reinventing SCRUM in Five Companies. Cutter IT
Journal, 2001. 14(12): p. 5-11.

[18] Sutherland, J., Agile Development: Lessons Learned

from the First Scrum. Cutter Agile Project Management
Advisory Service: Executive Update, 2004. 5(20): p. 1-
4.

[19] Sutherland, J., Future of Scrum: Pipelining of Sprints in

Complex Projects with Details on Scrum Type C Tools

and Techniques. 2005, PatientKeeper, Inc.: Brighton,
MA. p. 1-27.

[20] Takeuchi, H. and I. Nonaka, Hitotsubashi on

Knowledge Management. 2004, Singapore: John Wiley
& Sons (Asia).

[21] Takeuchi, H. and I. Nonaka, The New New Product

Development Game. Harvard Business Review,
1986(January-February).

[22] Weinberg, G., Quality Software Management Vol. 4:

Anticipating Change. 1997: Dorset House.

