
Scrum Metrics for Hyperproductive Teams:

How They Fly like Fighter Aircraft

Scott Downey

Owner, Rapid Scrum LLC

Scott@RapidScrum.com

Jeff Sutherland, Ph.D.

CEO, Scrum Inc.

Jeff@ScrumInc.com

Abstract

Scrum Teams use lightweight tools like Story

Points, the Burndown chart, and Team Velocity.

While essential, these tools alone provide insufficient

information to maintain a high energy state that

yields Hyperproductivity. More data is required, but

data collection itself can slow Teams. This effect

must be avoided when productivity is the primary

marker of success.

Here we describe nine metrics that can develop

and sustain Hyperproductive Teams—Velocity, Work

Capacity, Focus Factor, Percentage of Adopted

Work, Percentage of Found Work, Accuracy of

Estimation, Accuracy of Forecast, Targeted Value

Increase, Success at Scale, and the Win/Loss Record

of the Team. The unique contribution of this paper is

to demonstrate how a light touch and lightweight

strategy can be used to compare Teams with different

Story Point reference scales.

1. Background

A fighter aircraft is inherently unstable and must
constantly correct to stay within the flight envelope—
those parameters where the plane flies properly.
Recent work with Hyperproductive Teams shows they
are much like modern jet fighters. They have two
engines that produce velocity – alignment of the
Team, and Team spirit. Just like the cockpit gauges of
a fighter aircraft, Scrum Teams need a set of reliable,
lightweight metrics so that Team Performance can be
easily monitored and quickly corrected if problems
arise. These metrics must be collected with a
minimum of disruption to the Team, as we know that
the act of measurement alone may serve to slow
Teams down. Failure to collect and monitor these
metrics put you in danger of crashing from
Hyperproductivity back to a state that is no more
productive than waterfall Teams.

Historically, most Scrum teams have done a poor
job of collecting quality data over time on team
performance. The first Scrum team was carefully
measured using tooling provided by consultants from
Software Productivity Research. Subsequent Scrum

teams deployed at dozens of Scrum companies led by
Sutherland have captured even better data and these
data have been compared to ongoing research by
productivity expert, Capers Jones, the founder of SPR.
As a result we have some of the best data in the world
across many companies that precisely define the
expected performance of Scrum teams under varied
conditions.

For example, the Scrum teams initiated at Yahoo
by Scrum Foundation founders Sutherland, Deemer,
and Benefield delivered an average 35% improvement
in velocity at Yahoo [1] whereas Teams properly
coached on how to achieve performance delivered
300-400% increases. As Agile Coach at MySpace,
Downey had teams that peaked at 1680% of initial
velocity after 20 weeks and averaged 450% increase
in velocity over 10 Sprints. The highest performing
Team ever recorded was a Borland Team audited by
Bell Labs. They were 50 times faster than waterfall
Team industry average [2]. Clearly, large performance
gains are possible.

Currently, the best Scrum Teams in the world
average 750% gains over the velocity of waterfall
Teams with much higher quality, customer
satisfaction, and developer experience. We have
worked directly with projects in the U.S. [3], Russia
[4], the Netherlands and India [5], and compared
results with Software Productivity Research data on
agile Teams [5]. Capers Jones data has been almost
exactly equivalent to ours giving us significant
confidence in our findings. The problem addressed in
this paper is that over 90% of Scrum Teams never
deliver the capability seen in most of our teams and
Capers Jones teams [6].

Agile Teams have trouble measuring

performance. Global surveys by the authors show

50% of Teams do not know their velocity of

production and have difficulty finding ways to

improve and measure this rate. Even when Teams

know their velocity, management cannot compare the

performance of two Teams with current metrics.
Velocity on Agile Teams is typically measured in

Story Points. Teams pick a small reference story and
assign it an arbitrary number of points. All other
stories are estimated relative to the reference story
using the wide-band Delphi estimation technique

commonly known as “planning poker” [7] Planning
poker provides faster and more accurate estimates
with less variance than hourly estimates but has the
disadvantage that it is not usually comparable across
Teams. While function points are the preferred metric
for productivity research they require more training,
expertise, and time than is usually available to Agile
Teams [8]

The lack of adequate attention to metrics can

prevent Teams from systematically improving and

reaching a Hyperproductive state, at least 400%

better than the average waterfall Team. Today we

have many documented Hyperproductive Teams

running even faster than this [4, 9-11].

2. Scrum is an Ecosystem

Experienced Agile Coaches recognize that Scrum

is based on complex adaptive systems theory. It is not
a methodology, process, or procedure. It is a
framework based on enforcement of simple
constraints that will cause an average Team to self-
organize into a Hyperproductive state [12]. Simple
rules can drive self-organization at all levels in an
organization. [13]

Figure 1. Scrum is an ecosystem.

Any system will settle into the lowest possible
energy state. Consider a spinning top. In its natural,
unaffected state, it is motionless and lies tilted on its
side. When you introduce energy into the system by
spinning it, it becomes upright and stable for a time.
Then friction and gravity overcome the spinning
motion and it returns to a motionless, inert state.

The difference between the highest and lowest
performing software development Teams is 1:2000
[14]. This is more than two orders of magnitude
greater than the difference between the best and worst
developer on a project [15]. The average software
development Team is in a placid state (like the top in
its unaffected state) where velocity is slow, quality is
low, customers are unhappy, and management is
upset. We want to introduce energy into the Team and
enforce constraints that systematically produce high

velocity, high quality, happy managers, and ecstatic
customers.

Scrum meetings are designed to raise the quality
of communication within the Team, to align their

focus, and facilitate Team spirit. This introduces an
energy flow into the system which is constrained by
the ordering of the product backlog, the required
ready state of user stories, a strong definition of Done,
and continuous process improvement through removal
of impediments. Velocity of the Team, quality of the
software, satisfaction of the users, and revenue for the
company will always increase several hundred percent
if communication saturation goes up and Scrum
constraints are properly enforced. Waste will be
flushed from the system and the Team will go from
strength to strength.

When implementing Scrum, it is therefore,
essential to understand Scrum as an ecosystem of
interdependent parts. The coordination of the parts
requires daily inspection in order to maintain a high
energy state. A simple set of metrics provides a
dashboard similar to an aircraft cockpit. Watching
altitude, direction, speed, and rate of descent can keep
you on track even in heavy weather.

3. Current state of Agile teams

People often measure hours of work accomplished

or tasks completed without being able to clearly

demonstrate forward progress on the Product

Owner’s roadmap or demonstrate process

improvement that increases value contribution.

Management cannot compare performance of Agile

Teams straightforwardly. Productivity and quality are

less than 25% of what they could be with properly

functioning Teams.

There are, however, a few Teams that have

broken through the barrier of mediocre performance.

As an example, we have data on five Teams from

MySpace in California. Teams at MySpace worked

on a variety of projects, from SEO and framework

standards to internal tools and user features that

manage profiles and accounts for hundreds of

millions of users building their personal web pages.

3.1. Establishing Baseline Velocity

The Baseline Velocity (100%) is established for a
Team during the first Sprint. The Product Owner
presents the prioritized Product Backlog in the Sprint
Planning meeting. This is estimated using Planning
Poker and Story Points [7]. The Team selects what
can be accomplished during the Sprint and the
Product Owner determines exactly what is “Done” at
the end of the Sprint. The sum of the original

estimates for the approved work is the baseline
Velocity.

Velocity is defined as:
V = ∑ of original estimates of all accepted work

At MySpace, the Baseline Velocity is often

perceived by the Team as being too low. This derives
from the fact that they have been allowed and
encouraged to expect reward for motion alone, not
exclusively for completion. In Scrum, we do not
recognize Value Creation until the work is accepted
by the Product Owner as Done. So Team Members
who spend time on an initiative which is not
completed by the end of the Sprint initially feel
slighted when no points are accepted for their work.
Scrum Masters who strive to reward motion in the
absence of completion are doing a disservice to their
Team, as this delta serves to highlight the scale of
suboptimization that will be overcome with successful
application of the Scrum framework.

3.2. Daily Stand-Up Modifications

 In order to collect data indicating progress during

the Sprint and get new Teams operational more

quickly, a few modifications to the standard Daily

Stand-Up format were necessary.

 The first is to structure the meeting around the

Sprint Backlog. Most Teams use a standard format

wherein each individual answers the three Scrum

questions:

1. What did you do yesterday?

2. What are you going to do today?

3. What, if anything, is blocking you?

We shift the focus of the meeting from the

individuals to the Sprint Backlog. Starting with the

highest priority Sprint Backlog Item (SBI) that is not

yet completed in each Daily Stand-Up, the entire

Team discusses their collective contribution toward

completing that SBI. They then estimate their

collective contribution’s complexity in Story Points

as if the previous day’s contribution had been

presented during the Sprint Planning meeting as the

entire goal of the body of work. The Team then

collectively plans the fastest and most effective way

to share the work in order to move that SBI into the

Done column as quickly as possible. Finally, we

discuss anything that blocks the work or has the

potential to slow it down for any reason. So the

restructured Daily Stand-Up questions become:

1. What did WE achieve yesterday on Priority

1?

2. What was OUR contribution on Priority 1

worth in Story Points?

3. What is OUR plan for completing Priority 1

today?

4. What, if anything, is blocking US or has the

potential to slow US down today?

These questions are then repeated for each lower

Priority remaining in the Sprint Backlog until either

all SBIs have been discussed or the 15 minute

allotted time has elapsed, whichever comes first.

 These modifications serve several purposes.

Shifting the focus from the individual to backlog

priorities helps people to function more as a Team. It

encourages consideration of how to effectively

subdivide the work for quicker completion,

overcoming the technical silos that specialists tend to

prefer.

 We also find better quality updates and more

attentive participation from all Team Members as a

result of question 2. Because each Team Member

now has a need to understand the complexity that has

been resolved in order to vote on it, updates on the

order of “Yesterday, I worked on SBI 1. Today, I will

keep working on SBI 1. No impediments.” are no

longer tolerated by the Team. They become a self-

policing group, both demanding quality updates and

full attention from all Team Members to keep the

meeting efficient.

 Through the daily repetition of Story Point

estimation, we also find that both the quality and the

speed of estimation in Story Points improves more

quickly using this method than with Teams who only

experience Story Points during their Sprint Planning

Meetings and use alternate metrics during the Sprint.

This is true for all Teams, but is especially true for

those that may have previously been unfamiliar with

Story Points.

 The more detailed discussions of achievements

aide in cross-training the entire group more quickly,

as they will hear and be asked to estimate the work of

Teammates with specialties that may differ

significantly from their own. This also quickens the

Team’s learning so that they can move through the

Forming, Norming, Storming, Performing [16]

phases rapidly.

 Finally, and critically, it overcomes fractional

thinking. For example, it is typical for an engineer

who is working on a task estimated as 5 Story Points

to report 1 point per day for 5 days if s/he feels that

the work is progressing smoothly. This creates a

false sense of uniformity in the rate of complexity

resolution and often masks estimation inaccuracies

that could be discussed in Retrospectives to help the

entire Team become better at the initial estimates.

3.3 The INVEST criteria for SBIs

The common model for handling work in Scrum is
to have a Product Backlog (PBL) populated by User
Stories and a Sprint Backlog (SBL) populated by
some derivative from User Stories, typically referred
to as Tasks or simply Sprint Backlog Items (SBIs).
There is a common expectation that Product Backlog
Items (PBIs) are estimated in Story Points and may
vary widely in scale, while SBIs are designed to be a
uniform series of 2-hour blocks of time. The
commonly accepted justifications for this behavior are
threefold:

1. To control batch size of work with a goal of
providing granular visibility and a consistent
sense of progress to those outside of the Team

2. To push the Team to spend more time
investigating the work with a goal of creating
a higher degree of certainty that their Sprint
Forecast is completely accurate.

While both of these goals are good ones to pursue,
we find that the suggested approach to achieving them
is too heavy-handed.

Though a consistent batch size is known to help
speed Team performance [17] our model’s goal is to
spend a minimum of the Team’s time and effort on
digesting work and instead maximize the time and
energy available for achieving it. Using a slight
modification of the INVEST mnemonic [15], we ask
the Teams to accept the largest piece of work that
they believe they can achieve in the coming Sprint
with ~80%+ confidence, that is:

• Immediately Actionable

• Negotiable

• Valuable

• Estimable

• Sized to Fit (Max of ~50% of Velocity)

• Testable
We are not concerned with uniformity of scale

among the SBL, nor on the formatting of the items it
contains. We seek uniformity instead on the PBL.
With a goal of minimizing the Team’s time and
energy on everything that doesn’t directly create
Value, it is a natural shift to ask the Product Owners
to include this extra rigor in their PBI creation.

We then extract our external visibility by first
normalizing the units of measure between the PBL
and SBL into Story Points and, second,
communicating to all stakeholders outside the Team
exclusively in the unit of Sprints or percentages of
Sprints. This avoids the very dangerous situations
that arise when Story Points are used as the unit of
measure in external communications to stakeholders
who do not understand them, as Story Points are
exclusively meaningful to their Team of origin.

Further, the reformatted Daily Stand-Up Meeting
as described in section 3.2, above, provides us with a

consistent sense of progress for each SBI. We can
then clean up our Information Radiator [18] by
reducing the number of SBIs represented thereon
while keeping them in the language easily understood
by external stakeholders. The Information Radiators
are then returned to their original intent, which is to
clearly and quickly communicate status to
stakeholders not involved in the daily lives of the
Team. So the sense of what is happening comes from
the SBIs represented on the Information Radiator,
while the sense of progress comes from the Burndown
Chart in concert with the metrics described below.

3.4 MySpace Team Data

Data on five Teams at MySpace is summarized in

Figure 2.

Figure 2. Velocity of MySpace Teams

The solid curve in the middle of the graph is
average Velocity for all five Teams for each Sprint.
The upper and lower curves show the maximum and
minimum achievement from the data.

The lower dotted line marks 240% percent of
baseline Velocity. This threshold was used to
recognize that Teams had achieved a level of
proficiency with the Scrum Framework so that the
Agile Coach could begin gradually returning control
from the Shock Therapy [16] model to the Team
Members. This threshold was usually crossed in 3-5
one-week Sprints. Teams that achieve this typically
went on to surpass 400% (upper dotted line) into a
Hyperproductive state in later Sprints. The low data
points were from the only Team in this data set where
the MySpace Agile Coach did not assume the Scrum
Master role. The permanent Scrum Master failed to
enforce constraints.

These Teams were all monitored by the set of
metrics described below, which were used to analyze
performance in real time. Flying these Teams into the
Hyperproductive state required careful balance of the

altitude, speed, direction, and rate of descent on the
Burndown chart at all times. Failure to do this can
cause a Hyperproductive Team to spiral out of
control. The result is Velocity that descends to
baseline level.

4. Good Metrics Promote Improvements

Good metrics help the Team measure their own

performance and make changes based on facts, not

just on feelings or guesses. Since, unlike Story

Points, these metrics are meaningful outside of their

Team of origin, they help management compare the

performance of multiple Teams with apples-to-apples

data. They also lay down a consistent framework for

data collection so that measured hyperproductivity is

clear and broadly understood.

Good metrics give the Scrum Master a solid

foundation for the advice that s/he offers the Team.

They make clear the impact of any modification,

from the introduction of new tools and technologies

to changes in process or even Team composition.

This can help Scrum Masters who may need to justify

requests for additional resources make the case for

how those resources would be applied and the impact

that the company can expect if the requested

investment is approved.

The formulas for these ten essential metrics are as

follows:
1. Velocity

∑ of original estimates of all accepted work
2. Work Capacity

The sum of all work reported during the
Sprint, whether the SBI toward which the
work was applied finished or not.

3. Focus Factor

Velocity ÷ Work Capacity

4. Percentage of Adopted Work

∑(Original Estimates of Adopted Work) ÷

(Original Forecast for the Sprint)

5. Percentage of Found Work

∑(Original Estimates of Found Work) ÷

(Original Forecast for the Sprint)

6. Accuracy of Estimation

1-(∑(Estimate Deltas) ÷ Total Forecast)

7. Accuracy of Forecast

(∑Original Estimates) ∑ (∑Original

Estimates + ∑Adopted Work + ∑Found

Work)

8. Targeted Value Increase (TVI+)

Current Sprint’s Velocity ÷ Original Velocity

9. Success at Scale

For each Point on the Fibonacci Scale (Fp),

the formula is:

(∑No. Accepted Attempts of scale Fp) ÷(No.

of All Attempts of scale Fp)

10. Win/Loss Record

Each Sprint is a Win only if:

a) A minimum of 80% of the Original

Forecast is Accepted

b) Found + Adopted Work During the Sprint

remains at 20% or less of the Original

Forecast.

When we say Targeted Value Contribution is up

200%, we want it clear and demonstrable what we

mean: a doubling in the Team’s ability to

successfully resolve requested complexity. TVC+

(Targeted Value Contribution increase) allows us to

compare the increase in profitably applied

horsepower of the Team with the increase in revenue

generated by the Product Owner’s backlog.

Figure 3. Velocity and Work Capacity

We naturally expect that the Team’s Work

Capacity (the measure of their full horsepower) will

be higher than their Velocity (the measure of their

ability to turn their effort into requested and approved

Value). In Figure 3. note that the dotted line which

marks Work Capacity is usually equal or above

Velocity.

Work Capacity may, on rare occasions, drop

below Velocity. This is because Velocity is

calculated based on the Original Estimates of work

while work Capacity is calculated based on the sum

of actual work reported. In this rare inversion

scenario, it indicates that the Team has been

overestimating the complexity of the work requested.

The Focus Factor, calculated as the ratio of

Velocity ÷ Work capacity, should remain in the

neighborhood of 80% on average for a healthy Team.

In Figure 4. , we see a Team that was struggling for

the first three Sprints. These data points below 80%

indicate a Team that is disrupted by external events

or otherwise incapable of turning their Forecast work

into Accepted Work. When the Focus Factor goes

too high, it generally indicates that either the Team

have been under forecasting their ability in order to

appear “perfect”, or are ignoring other organizational

responsibilities which may blow up in the near future.

Figure 4. Focus Factor

In Figure 5. , below, we see an example of raw

data from the RoboScrum workbook.

Found Work is work associated with a piece of

Forecast Work which is above and beyond what was

initially expected but which must be completed to

deliver the original work item.

Adopted Work is work that is brought forward

from the Product Backlog at any point during the

Sprint because the Team has completed their original

Forecast early.

As a percentage of the original Forecast, these two

values when added together should not exceed 20%

of the original Forecast in an average case. As you

see in the examples, the Author uses a rolling 10-

Sprint window to evaluate the average performance

of the metrics presented herein.

Figure 5. Adopted & Found Percentages

Figure 6. and Figure 7. below, show the trending

accuracies of Forecast and Estimation for a new

Team with only seven one-week Sprints under their

belt are shown.

Forecast Accuracy refers to the Team’s ability to

come together in the Sprint Planning Meeting, select

and devote themselves to a body of work that, with

80% accuracy, represents what they can achieve

during the coming Sprint. Any Team that achieves

100% Accuracy is likely under some form of external

pressure and is, therefore, underforecasting work

because of fear of reprisal or some similar,

dysfunctional dynamic. When this number goes

above 90%, the Scrum Master needs to evaluate the

environment of the Team to be sure that they feel

safe making a good faith effort at more work, even

when the bottom 20% of the Forecast is not accepted

by the end of the Sprint.

When Forecast Accuracy dips below 75-80%, it is

generally because the Team is heavily randomized or

is not being adequately protected by the Scrum

Master during the Sprint. Especially in scenarios

where multiple Teams do Sprint Planning on the

same day, it is often the case that a Product Owner of

one Team is failing to coordinate their Team’s needs

with the Product Owner of another Team, resulting in

an unplanned quantity of work landing on a Team’s

shoulders early in the Sprint. A good Scrum Master

will be sure that the Sprint is protected from this

behavior. A great Scrum Master will work with the

Product Owners to be sure their PBLs are

coordinated ahead of Sprint Planning so that all

Teams’ Sprint Planning Meetings are effective

predictors of the organization’s achievement in the

coming Sprint.

Accuracy of Estimation reflects the Team’s ability

to correctly estimate the body of work during Sprint

Planning. This number, again, should remain around

80% in healthy Teams who are challenged by their

work.

When Accuracy of Estimation goes too high

(above 88% on average), it is likely that the Team is

being overly conservative and spending an inordinate

amount of time planning, digesting, researching and

so on. In those scenarios, we advise the Team to

accept a bit more risk and spend more time achieving

the work than studying it for planning purposes. This

generally results in shorter meetings, higher

productivity and (for those who prefer shorter

meetings) happier Teams.

When Accuracy of Estimation dips too low

(below 72% on average), the Scrum Master should

begin investigating pressures on the Team. It is often

the case that the User Stories/PBIs are too poorly

understood, that the Product Owner is unavailable to

the Team during the Sprint, that the Team does not

understand the technology or product that they are

being asked to build/modify, or that the requirements

are changing during the Sprint. There is also the

potential that you have a Knowledge Vampire on the

Team who is hoarding system-critical knowledge and

keeping everyone else in the dark.

All of these structural deficits are correctable, and

this metric lets the Scrum Master know when such

corrections are necessary and when the corrections

have yielded the desired state of confidence.

Figure 6. Forecast Accuracy

Figure 7. Estimation Accuracy

In Figure 8. , the sample data taken from

RoboScrum indicates that the Team has achieved a

242.9% TVI+. This indicates that their Velocity for

the Sprint which just concluded is just over twice

their Original Velocity. In Shock Therapy [16], this

would be a Team that is ready to begin taking back

some control over their Scrum adoption from the

Shock Therapy Coach provided that their numbers

stay up and the changes they propose adhere to the

principles and ethics of the Scrum Framework.

Figure 8. Targeted Value Increase

To give Teams a sense of confidence during

Sprint Planning Meetings, as well as to help them

select the granularity to which work should be

digested while using INVEST, the Success at Scale

data is invaluable. In Figure 9. , below, you see that

the data indicates a high degree of competency with

SBIs at positions 1 and 2 along the Fibonacci

sequence. Those SBIs estimated as a 3, 5 or 8 are

also in the range of acceptably successful; however,

13 is too risky for anything that may represent too

large a commitment for the coming Sprint. In the

example below, no SBIs of a scale above a 13 had

been tried.

Suppose your Team has a Velocity of 40 points

per Sprint and is just beginning a new Sprint

Planning meeting. The “S” in INVEST (Sized to Fit)

suggests that it is unwise to accept a single SBI larger

than 50% of your Velocity or, in this scenario, 20

Points.

Further suppose that the first PBI up for

consideration has previously been estimated as a 34.

Holding all other variables consistent, and though

clearly small enough to fit into the Team’s expected

Velocity, a quick glance at the Success at Scale chart

lets us know that the Team has not historically been

successful with individual SBIs larger than an 8.

It is never recommended that Teams be denied the

opportunity to try. If they feel confident, they should

be allowed to proceed. But a Scrum Master who is

advising a Team should ask a few questions before

the Team simply adopts the PBI as its highest priority

SBI. These questions may include, “What is

different about this 34 point card than the other cards

smaller than it which have not succeeded?”,

“INVEST advises us against accepting any single

SBI larger than 50% of our Velocity, or 20 Points in

our current case. Why do you think this 34 Point PBI

is safe to forecast for completion as-is?”, etc.

 As described in section 3.3, above, we advise our

Teams to accept the largest piece of work for which

the Team has about 80% confidence that they can

achieve, and which has passed INVEST. Given the

data in Figure 9. , the Team may choose to break the

34 point PBI into a series of 3, 5 and 8 Point SBIs

before proceeding. But, again, it is important that a

confident Team be allowed to try the unprecedented

when it is organizationally safe and responsible to do

so.

Figure 9. Success at Scale

Careful tracking of unplanned work is essential to

detecting and removing waste from a

Hyperproductive Team. As seen in Figure 10. , a

Sprint can only be considered a Win if at least 80%

of the Original Forecast was approved by the Product

Owner, and the combined surprise work (Found +

Adopted) remains at a level of 20% or less of the

Original Forecast.

Figure 10. Win/Loss Record

5. Conclusions

Hyperproductive Scrum Teams, and the Scrum

Masters who advise them, need a simple set of

metrics to provide subtle control that maintains safe

and consistent growth. Without these metrics,

performance of the Team can be unstable and loss of

control will result in lowered Velocity. We carefully

avoid hours as a means of tracking progress as it

introduces waste into the system, lowers Velocity,

and reduces predictability. The resulting simple set of

metrics are easy to implement and have a powerful

effect on the performance of Scrum Teams.

6. References

[1] G. Benefield, "Rolling Out Agile at a Large

Enterprise," in HICSS'41, Hawaii International

Conference on Software Systems, Big Island, Hawaii,

2008.

[2] J. O. Coplien, "Borland Software Craftsmanship: A

New Look at Process, Quality and Productivity," in

5th Annual Borland International Conference,

Orlando, FL, 1994.

[3] M. Cohn, User Stories Applied : For Agile Software

Development: Addison-Wesley, 2004.

[4] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov,

"Distributed Scrum: Agile Project Management with

Outsourced Development Teams," presented at the

HICSS'40, Hawaii International Conference on

Software Systems, Big Island, Hawaii, 2007.

[5] C. Jones, "Development Practices for Small Software

Applications," Software Productivity Research 2007.

[6] C. Jones, Software Engineering Best Practices:

Lessons from Successful Projects in the Top

Companies: McGraw Hill, 2010.

[7] M. Cohn, Agile Estimation and Planning: Addison-

Wesley, 2005.

[8] J. Sutherland, Scrum Handbook: Scrum Foundation,

2010.

[9] J. Sutherland and I. Altman, "Take No Prisoners: How

a Venture Capital Group Does Scrum," in Agile 2009,

Chicago, 2009.

[10] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey,

and S. Vishal, "Fully Distributed Scrum: Linear

Scalability of Production Between San Francisco and

India," in Agile 2009, Chicago, 2009.

[11] C. Jakobsen and J. Sutherland, "Scrum and CMMI –

Going from Good to Great: are you ready-ready to be

done-done?," in Agile 2009, Chicago, 2009.

[12] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J.

Sutherland, "Scrum: A Pattern Language for

Hyperproductive Software Development," in Pattern

Languages of Program Design. vol. 4, N. Harrison,

Ed., ed Boston: Addison-Wesley, 1999, pp. 637-651.

[13] D. Sull and K. Eisenhardt, "Simple Rules for a

Complex World," Harvard Business Review, pp. 69-

76, 2012.

[14] L. Putnam and W. Myers, Industrial Strength

Software: Effective Management Using Measurement:

IEEE, 1997.

[15] J. Spolsky. (2005, Hitting the High Notes. Joel on

Software.

[16] B. Tuckman and M. A. Jensen, "Stages of Small-

Group Development Revisited," Group &

Organization Management, vol. 2, 1977.

[17] T. Ohno, Toyota Production System: Beyond Large

Scale Production: Productivity Press, 1988.

[18] A. Cockburn, Crystal Clear: A Human-Powered

Methodology for Small Teams: Addison-Wesley,

2004.

