

1

This book is dedicated to Nobel Laureate Muhammad Yunus and the

Grameen Bank for originating microenterprise development and the

Accion International President’s Advisory Board, responsible for much

of microenterprise development in the western hemisphere.

The strategy for bootstrapping the poor out of poverty has been

a model for freeing hundreds of thousands of software developers from

developer abuse caused by poor management practices.

Thanks to the reviewers of the text who include among many others:

• Tom Poppendieck

• Henrik Kniberg

• Rowan Bunning

• Clifford Thompson

• Jim Coplien

About this book

This manual is based on The Scrum Papers, published by Scrum, Inc.

For information on how to receive your own copy, please contact the

author:

2

Jeff Sutherland

Scrum, Inc.

One Broadway, 14th Floor

Cambridge, MA 02142

Jeff.Sutherland@Scruminc.com

Executive Summary

Scrum is an agile method designed to add

energy, focus, clarity, and transparency to

project planning and implementation.

Today, Scrum is used in small, mid-sized

and large software corporations all over

the world. It is being used in more and

more areas beyond software.

Properly implemented, Scrum will:

• Increase speed of development

• Align individual and corporate objectives

• Create a culture driven by performance

• Support shareholder value creation

• Achieve stable and consistent

communication of

performance at all levels

• Enhance individual development and quality

of life

3

This handbook gives some basic

information on how to get started with

Scrum, and also describes some cases in

point. It is based on The Scrum Papers,

published by Scrum, Inc. (see

www.scruminc.com).

Contents

Preface 5

Scrum at a Glance 6

The Scrum Roles 14

Getting Started with Scrum 18

Scrum Cases 38

The SirsiDynix Case 46

Can Scrum projects fail? 59

Appendix

Who’s who in Scrum

Reference

4

In only twenty years…

Scrum has risen from being a method used by a number of enthusiasts

at the Easel Corporation in 1993, to one of the world’s most popular

and well-known frameworks for development of software. The

continued expansion of the global rollout of Scrum is testimony to the

fact that Scrum delivers on its promise.

While it is often said that Scrum is not a silver bullet, Scrum can be

like a heat-seeking missile

when pointed in the right

direction. Its inspect and

adapt approach to

continuous quality

improvement can transform

outmoded business practices.

By focusing on building

communities of stakeholders,

encouraging a better life for

developers, and delivering

extreme business value to

customers, Scrum can

release creativity and team

spirit in practitioners and

make the world a better

place to live and work.

5

Scrum has emerged from a rough structure for iterative, incremental

development to a refined, well-structured, straight- forward framework

for complex product development. I’ve worked with others to adjust,

test, and adjust it again until it is solid. This framework is fully defined

in the Scrum Guide at www.scrum.org, where Ken Schwaber and I

sustain and help it emerge further.

The manual you are holding has been compiled from papers and

compendiums that have been used at Scrum, Inc. (“The Scrum

Papers”). We hope that it may serve both as an inspiration and a

source of information for those readers who intend to start their first

Scrum projects in their organizations. Seasoned Scrum users may also

find some nuggets of wisdom. In any case, we appreciate all kinds of

feedback. The Scrum adventure has just begun for all of us!

6

Chapter One

Scrum at a Glance

Scrum is an iterative, incremental framework for projects

and product or application development.

Scrum structures development in cycles of work called Sprints. These

iterations are less than one month in length, and usually measured in

weeks. Sprints take place one after the other. The Sprints are of fixed

duration – they end on a specific date whether the work has been

completed or not, and are never extended. Hence, they are said to be

time boxed.

At the beginning of each Sprint, a cross-functional team selects items

(customer requirements) from a prioritized list. They commit to

complete the items by the end of the Sprint. During the Sprint, the

chosen items do not change. Every day the Team gathers briefly to re-

plan its work to optimize the likelihood of meeting commitments.

At the end of the Sprint, the team reviews the Sprint with stakeholders,

and demonstrates what they have built. People obtain feedback that

can be incorporated in the next

Sprint.

Inspect & adapt

Scrum emphasizes a working product

at the end of the Sprint that is really

“done”. In the case of software, this

means code that is:

7

• Integrated

• Fully Tested

• Potentially Shippable

A major theme in Scrum is “inspect and

adapt.” Since development inevitably involves

learning, innovation, and surprises, Scrum

emphasizes taking a short step of

development, inspecting both the resulting

product and the efficacy of current practices,

and then adapting the product goals and

process practices. Repeat forever.

Agile Development and Scrum

Scrum is, as the reader supposedly knows, an

agile method. The agile family of

development methods evolved from the old

and well-known iterative and incremental life-

cycle approaches. They were born out of a

belief that an approach more grounded in

human reality and the product development

reality of learning, innovation, and change –

would yield better results.

Agile principles emphasize building working

software that people can get hands on quickly,

versus spending a lot of time writing

specifications up front. Agile development

focuses on cross- functional teams

empowered to make decisions, versus big

Scrum – A Rugby Term

“Scrum [---] in the sports

of rugby union and rugby

league, is a way of

restarting the game, either

after an accidental

infringement or (in rugby

league only) when the ball

has gone out of play. [---]

[A] scrum is formed by the

players who are designated

forwards binding together in

three rows. The scrum then

‘engages’ with the opposition

team so that the players’

heads are interlocked with

those of the other side's front

row. The scrum half from the

team that did not infringe

then throws the ball into the

tunnel created in the space

between the two sets of front

rowers’ legs. Both teams may

then try to compete for the

ball by trying to hook the ball

backwards with their feet.”

(From Wikipedia)

8

hierarchies and compartmentalization by function. It also focuses on

rapid iteration, with continuous customer input along the way. Often

when people learn about agile development or Scrum, there’s a

glimmer of recognition – it sounds a lot like back in the start-up days

“when we just did it.”

Scrum was strongly influenced by a 1986 Harvard Business Review

article on the practices associated with successful product

development groups by Professors Takeuchi and Nonaka. in this paper

the term “Scrum” was introduced, relating successful development to

the game of Rugby in which a self-organizing (self- managing) team

moves together down the field of product development. The first

Scrum team was created at Easel Corporation in 1993 by Dr. Jeff

Sutherland (the author of this manual) and the Scrum framework was

formalized in 1995 by Jeff and Ken Schwaber.

9

10

Scrum’s Reach

Today, Scrum is used by companies large and small, including:

Google, Yahoo!, Microsoft, Adobe

Lockheed Martin, Boeing, Raytheon

Johns Hopkins APL, Los Alamos Laboratories

Siemens, SAP, Oracle, IBM, Pegasystems

Nokia, Motorola, British Telecom, Telefonica/O2

Cisco, Alcatel, Ericsson

GE

Capital One, Wells Fargo, Vanguard, Saxo Bank

US Federal Reserve

Teams using Scrum report significant improvements, and in some

cases complete transformations, in both productivity and morale. For

product developers – many of whom have been burned by the

“management fad of the month club” – this is significant. Or to put it

clearly: Scrum is just simple and powerful!

11

Part 1

Scrum Basics

12

Chapter 1

How Scrum Works

 The Product Backlog
A Scrum project is driven by a product

vision created by the Product Owner,

and expressed in the Product Backlog.

The Product Backlog is a prioritized list

of what’s required, ranked in order of

value to the customer or business, with

the highest value items at the top of the

list. The Product Backlog evolves over

the lifetime of the project, and items are

continuously added, removed or

reprioritized.

The Sprint
Scrum structures product development

in cycles of work called Sprints,

iterations of work that are typically 1–4

weeks in length. The Sprints are of fixed

duration and end on a specific date

whether the work has been completed

or not; they are never extended.

Sprint Planning

At the beginning of each Sprint, the Sprint

Planning Meeting takes place. The Product

Owner and Team (with facilitation from the

Scrum Master) reviews the Product

Backlog,

Three Roles:

Product Owner
Takes the inputs of what the

product should be and

translates them into a

product vision or a Product

Backlog.

The Team
Makes the product envisioned

by the Product Owner.

Scrum Master
Does whatever it takes to

make the Scrum Team

successful, such as removing

organizational impediments,

facilitating meetings, acting

as a gatekeeper so no one

unnecessary interrupts the

team's work.

13

discuss the goals and context for the items, and the Team selects the

items from the Product Backlog to commit to complete by the end of the

Sprint, starting at the top of the Product Backlog. Each item selected from

the Product Backlog is designed and then broken down to a set of

granulated steps. This list of backlog items is recorded in a document

called the Sprint Backlog.

Daily Standup

Once the Sprint has started, the Team engages in

another of the key Scrum practices: The Daily Stand-Up

Meeting. This is a short (15 minutes) meeting that

happens every workday at an appointed time. Everyone

on the team attends. At this meeting, the information

needed to inspect progress is presented. This

information may result in re-planning and further

discussions immediately after the Daily Standup.

Sprint Review
After the Sprint ends, there is the Sprint Review, where the

Scrum Team and stakeholders inspect what was done

during the Sprint, discuss it, and figure out what to do next.

Present at this meeting are the Product Owner, Team

Members, and Scrum Master, plus customers, stakeholders,

experts, executives, and anyone else interested.

Sprint Retrospective

Following the Sprint Review, the team gets together for the

Sprint Retrospective which is an opportunity for the team

to discuss what’s working and what’s not working, and

agree on changes to try.

14

What’s Wrong With Traditional Software

Development?

The traditional way to build software, used by companies big and small,

was a sequential life cycle of which there are many variants (such as

the V-Model). Commonly, it is known as “The Waterfall”.

It typically begins with a detailed planning phase, where the end

product is carefully thought through, designed, and documented in

great detail.

The tasks necessary to execute the design are determined, and the

work is organized using tools such as Gantt charts and applications

such as Microsoft Project. The team arrives at an estimate of how long

the development will take by adding up detailed estimates of the

individual steps involved.

Once stakeholders have thoroughly reviewed the plan and provided

their approvals, the team starts to work.

Team members complete their specialized portion of the work, and

then hand it off to others in production-line fashion.

Once the work is complete, it is delivered to a testing organization

(some call this Quality Assurance), which completes testing prior to

the product reaching the customer. Throughout the process, strict

controls are placed on deviations from the plan to ensure that what is

produced is actually what was designed.

15

This approach has strengths and weaknesses. Its great strength is that

it is supremely logical – think before you build, write it all down, follow

a plan, and keep everything as organized as possible. It has just one

great weakness: humans are involved. Hence a lot of problems occur:

Creativity Is Inhibited

This approach requires that the good ideas all come at the beginning

of the release cycle, where they can be incorporated into the plan. But

as we all know, good ideas appear throughout the process – in the

beginning, the middle, and sometimes even the day before launch. A

process that does not permit change will stifle this innovation. With the

waterfall, a great idea late in the release cycle is not a gift, it’s a threat.

Written Documents Have Limitations

The waterfall approach places a great emphasis on writing things down

as a primary method for communicating critical information. The very

reasonable assumption is that if I can write down on paper as much as

possible of what’s in my head, it will more reliably make it into the

head of everyone else on the team; plus, if it’s on paper, there is

tangible proof that I’ve done my job. The reality, though, is that most

of the time these highly detailed 50-page requirements documents just

do not get read. When they do get read, the misunderstandings are

often compounded. A written document is an incomplete picture of my

ideas; when you read it, you create another abstraction, which is now

two steps away from what I think I meant to say at that time. It is no

surprise that serious misunderstandings occur.

Bad Timing

16

Something else that happens when you have humans involved is the

hands- on “aha” moment – the first time that you actually use the

working product. You immediately think of 20 ways you could have

made it better. Unfortunately, these very valuable insights often come

at the end of the release cycle, when changes are most difficult and

disruptive – in other words, when doing the right thing is most

expensive, at least when using a traditional method.

No Crystal Balls

Humans are not able to predict the future. For example, your

competition makes an announcement that was not expected.

Unanticipated technical problems crop up that force a change in

direction. Furthermore, people are particularly bad at planning

uncertain things far into the future – guessing today how you will be

spending your week eight months from now is something of a fantasy.

It has been the downfall of many a carefully constructed Gantt chart.

Too Much Work and No Fun

In addition, a sequential life cycle tends to foster an adversarial

relationship between the people that are handing work off from one to

the next. “He’s asking me to build something that’s not in the

specification.” “She’s changing her mind.” “I can’t be held responsible

for something I don’t control.” And this gets us to another observation

about sequential development – it is not much fun. The waterfall

model is a cause of great misery for the people who build products.

The resulting products fall well short of expressing the creativity, skill,

and passion of their creators. People are not robots, and a process that

requires them to act like robots results in unhappiness.

Sub-optimized results

17

A rigid, change-resistant process produces mediocre products.

Customers may get what they first ask for (at least two translation

steps removed), but is it what they really want once they see the

product? By gathering all the requirements up front and having them

set in stone, the product is condemned to be only as good as the initial

idea, instead of being the best once people have learned or discovered

new things.

Practitioners of a sequential life cycle experience these shortcomings

again and again. But, it seems so supremely logical that the common

reaction is to turn inward: “If only we did it better, it would work, and

if we just planned more, documented more, resisted change more,

everything would work smoothly”. Unfortunately, many teams find just

the opposite: the harder they try, the worse it gets! There are also

management teams that have invested their reputation – and many

resources – in a waterfall model; changing to a fundamentally different

model is an apparent admission of having made a mistake. And Scrum

is fundamentally different ...

18

Chapter 2

The Scrum Roles

In Scrum, there are three primary roles: The Product Owner, The

Team and The Scrum Master.

The Product Owner

The Product Owner is responsible for

maximizing return on investment (ROI) by

identifying product features, translating these

into a prioritized feature list, deciding which

should be at the top of the list for the next

Sprint, and continually re- prioritizing and

refining the list.

The Product Owner has profit and loss

responsibility for the product, assuming it is a commercial product. In

the case of an internal application, the Product Owner is not

responsible for ROI in the sense of a commercial product (that will

generate revenue), but they are still responsible for maximizing ROI in

the sense of choosing – each Sprint – the highest- business-value

lowest-cost items.

Not a Product Manager

In some cases, the Product Owner and the customer are the same

person; this is common for internal applications. In others, the

customer might be millions of people with a variety of needs, in which

19

case the Product Owner role is similar to the Product Manager or

Product Marketing Manager position in many product organizations.

However, the Product Owner is somewhat different than a traditional

Product Manager because they actively and frequently interact with the

team, personally offering the priorities and reviewing the results each

two- or four-week iteration, rather than delegating development

decisions to a project manager. It is important to note that in Scrum

there is one and only one person who serves as – and has the final

authority of – Product Owner. In multi- team programs, this one

Product Owner may delegate the work to Product Owners that

represent him or her on subordinate teams, but all decisions and

direction come from the top-level, single Product Owner.

The Team

The Team builds the product that the

customer is going to use: the application or

website, for example. The Scrum team is

cross-functional and includes all the

expertise necessary to deliver the

potentially shippable product each Sprint. It

is also self-organizing (self-managing), with

a very high degree of autonomy and

accountability.

Hence, there is no team manager or project

manager in Scrum. Instead, the Team members decide what to

commit to, and how best to accomplish that commitment. The Team is

self- organizing.

20

The Scrum Team includes the Product Owner and the Scrum Master.

However, the Team often refers to those implementing the Sprint

Backlog, which may or may not include the Product Owner or the

Scrum Master.

Dedicated Team

The Scrum Team is seven plus or minus two people. For a software

product the Team working on the Sprint Backlog might include

programmers, interface designers, and testers. The Team develops the

product and provides ideas to the Product Owner about how to make

the product great. In my experience, it is essential that the Team is

100 percent dedicated to the work for one product during the Sprint;

multitasking across multiple products or projects will severely limit

performance.

Stable Teams are associated with higher productivity, so changing

team members should also be avoided. Application groups with many

people are organized into multiple Scrum teams, each focused on

different features for the product, with close coordination of their

efforts. Since one Team does all the work (planning, analysis,

programming, and test) for a complete customer-centric feature,

Scrum teams are also known as feature teams. In very technically

complex programs and products, I’ve seen Teams organized by

architectural layer - such as when product family architectures are

employed. However, integration prior to the end of the Sprint is more

difficult when Teams are so structured.

21

The Scrum Master

The Scrum Master helps the product group

learn and apply Scrum to achieve business

value. The Scrum Master does whatever is in

their power to help the team be successful.

The Scrum Master is not the manager of the

team or a project manager; instead, the Scrum

Master serves the team, protects them from outside interference, and

educates and guides the Product Owner and the team in the skillful

use of Scrum. The Scrum Master makes sure everyone on the team

(including the Product Owner, and those in management) understands

and follows the practices of Scrum. They also help lead the

organization through the often difficult changes required to achieve

success with agile development.

Commitment is Important

Since Scrum makes visible many impediments and threats to the

team’s and Product Owner’s effectiveness, it is important to have an

engaged Scrum Master working energetically to help resolve those

issues. If not, the team or Product Owner will find it difficult to succeed.

Scrum teams should have a dedicated full-time Scrum Master,

although a smaller team might have a team member play this role

(carrying a lighter load of regular work when they do so). Great Scrum

Masters can come from any background or discipline: Engineering,

Design, Testing, Product Management, Project Management, or Quality

Management.

The Scrum Master and the Product Owner cannot be the same

individual; at times, the Scrum Master may be called upon to push

back on the Product Owner (for example, if they try to introduce new

22

deliverables in the middle of a Sprint). And unlike a project manager,

the Scrum Master does not tell people what to do or assign tasks –

they facilitate the process, supporting the team as it organizes and

manages itself. If the Scrum Master was previously in a position

managing the team, they will need to significantly change their

mindset and style of interaction for the team to be successful with

Scrum. In the case that an ex-manager transitions to the role of

Scrum Master, it is best to serve a team other than the one that they

used to supervise.

What About Managers?

Note that there is no role of project manager in Scrum. Sometimes an

(ex-) project manager can step into the role of Scrum Master, but this

has a mixed record of success – there is a fundamental difference

between the two roles, both in day-to-day responsibilities and in the

mindset required to be successful.

In addition to the three Scrum roles, there are other contributors to

the success of the product, including managers. While their role

changes, they are invaluable. For example:

• They create a business model that works and provide resources

the team needs

• They support the team by respecting the rules and spirit of

Scrum

• They help remove impediments that the team identifies

• They make their expertise and experience available to the team

• They challenge the team to move beyond mediocrity

23

In Scrum, these individuals replace the time they previously spent

playing the role of “nanny” (assigning tasks, getting status reports,

and other forms of micromanagement) with time as “guru” and

“servant” of the team (mentoring, coaching, helping remove obstacles,

helping problem-solve, providing creative input, and guiding the skills

development of team members). In this shift, managers may need to

change their management style; for example, using Socratic

questioning to help the team discover the solution to a problem, rather

than simply deciding a solution and assigning it to the team.

24

Chapter 3

Getting Started

Initiating a Scrum project is not hard, as long as one takes one step at

a time, and makes sure that everyone feels included.

The Product Backlog

The first step in Scrum is for the Product

Owner to articulate the product vision.

Eventually, this evolves into the refined and

prioritized list of features, the Product

Backlog.

This backlog exists and evolves over the

lifetime of the product; it is the product road

map. At any point, the Product Backlog is

the single, definitive view of “everything that could be done by the

team ever, in order of priority”. Only a single Product Backlog exists;

this means the Product Owner is required to make prioritization

decisions across the entire spectrum.

25

The Product Backlog includes a variety

of items, primarily new customer

features (“enable all users to place

book in shopping cart”), but also

engineering improvement goals

(“rework the transaction processing

module to make it scalable”),

exploratory or research work

(“investigate solutions for speeding up

credit card validation”), performance

and security requirements, and,

possibly, known defects (“diagnose

and fix the order processing script

errors”), if there are only a few

problems. (A system with many

defects usually has a separate defect

tracking system.) Many people like to

articulate the requirements in terms of

“user stories” - concise, clear

descriptions of the functionality in

terms of its value to the end user of

the product. In more demanding

environments, such as FDA life critical

applications, Use Cases are often used.

The subset of the Product Backlog that is intended for the current

release is known as the Release Backlog, and in general, this portion is

the primary focus of the Product Owner.

How Much Detail?
One of the myths about Scrum is

that it prevents you from writing

detailed specifications; in reality,

it is up to the Product Owner and

Team to decide how much detail

is required, and this will vary from

one backlog item to the next,

depending on the insight of the

team, and other factors. State

what is important in the least

amount of space necessary – in

other words, do not describe

every possible detail of an item,

just make clear what is necessary

for it to be understood. Low

priority items, which are likely to

be implemented at a later stage

and are usually “coarse–grained”,

have fewer requirement details.

High priority and “fine-grained

items” that will soon be

implemented tend to have more

detail. For more on structuring

Product Backlog, a study of lean

thinking, particularly lean

inventory and just-in-time order

processing, will prove

instructional.

26

The Product Backlog leads the way ahead for the Scrum Team. Maintained by Product Owner.

The Product Backlog is continuously updated by the Product Owner to

reflect changes in the needs of the customer, new ideas or insights,

moves by the competition, technical hurdles that appear, and so forth.

The team provides the Product Owner with estimates of the effort

required for each item on the Product Backlog. In addition, the Product

Owner is responsible for assigning a business value estimate to each

individual item. This is often an unfamiliar practice for a Product Owner.

With the two estimates (effort and value) and perhaps with additional

risk estimates, the Product Owner prioritizes the backlog (actually,

usually just the Release Backlog subset) to maximize ROI (choosing

items of high value with low effort) or secondarily, to reduce some

major risk. As will be seen, these effort and value estimates may be

refreshed each Sprint as people learn; consequently, this is a

continuous re-prioritization activity and the Product Backlog is ever

evolving.

Scrum does not mandate the form of estimates in the Product Backlog,

but it is common to use relative estimates expressed as “points” rather

than absolute units of effort such as person-weeks.

27

Over time, a team tracks how many relative

points they implement each Sprint; for

example, averaging 26 points per Sprint.

With this information they can project a

release date to complete all features, or how

many features will likely be completed by a

date. Standard deviations around the average

points will indicate least likely and most likely

possibilities. The number of points completed

per Sprint is called the velocity of the team. A

realistic release plan is always based on the

velocity of the team.

The items in the Product Backlog can vary

significantly in size or effort. Larger ones are broken into smaller items

during the Product Backlog Refinement

workshop or the Sprint Planning

Meeting, and smaller ones may be

consolidated.

Sprint Planning

The Sprint Planning Meeting opens the

Sprint. It is divided into two distinct

sub-meetings, the first of which is

called Sprint Planning Part One.

In Sprint Planning Part One, the

Product Owner and Team (with

facilitation from the Scrum Master) review the high-priority items in

the Product Backlog that the Product Owner is interested in

Team Planning
A key practice in Scrum

is that the team decides

how much work they

will commit to

complete, rather than

having it assigned to

them by the Product

Owner. This makes for a

more reliable

commitment because

the team is making it

based on their own

analysis and planning,

rather than having it

“made” for them by

someone else.

28

implementing this Sprint. They discuss the goals and context for these

high-priority items on the Product Backlog, providing the Team with

insight into the Product Owner’s thinking. The Product Owner and

Team also review the “Definition of Done” that all items must meet,

such as, “Done means coded to standards, reviewed, implemented

with unit test-driven development (TDD), tested with 100 percent test

automation, integrated, and documented.” This definition of “done”

ensures transparency and quality fit for the purpose of the product and

organization.

Part One focuses on understanding what the Product Owner wants.

According to the rules of Scrum, at the end of Part One the (always

busy) Product Owner may leave although they must be available (for

example, by phone) during the next meeting. However, they are

welcome to attend Part Two...

Sprint Planning Part Two, often referred to as Sprint Refinement,

focuses on detailed task planning for how to implement the items that

the team decides to take on. The Team selects the items from the

Product Backlog they commit to complete by the end of the Sprint,

starting at the top of the Product Backlog (in others words, starting

with the items that are the highest priority for the Product Owner) and

working down the list in order.

While the Product Owner does not have control over how much the

team commits to, he or she knows that the items the team is

committing to are drawn from the top of the Product Backlog – in

other words, the items that he or she has rated as most important.

The team has the authority to also select items from further down the

list in consultation with the Product Owner; this usually happens when

29

the team and Product Owner realize that something of lower priority

fits easily and appropriately with the high priority items.

The Sprint Planning Meeting should be

time boxed to four hours for a four-week

Sprint and two hours for a two-week

Sprint. In order to do this, the team must

help the Product Owner by estimating the

size of stories before the Sprint Planning

meeting – the team is making a serious

commitment to complete the work, and

this commitment requires careful thought

to be successful. A Team bases its

commitments on its past velocities. If a

Team is new, new to the technology or

domain, it may not have reliable, stable

velocities until it has worked together for

three or four Sprints. In making its commitment, the Team factors in

any vacations, new organizational demands, and other items that may

reduce its past velocity.

Once the Team capacity available is determined, the Team starts with

the first item on the Product Backlog – in other words, the Product

Owner’s highest priority item – and working together, breaks it down

into individual stories, which are recorded in a document called the

Sprint Backlog (see below). As mentioned, the Product Owner must be

available during Part Two (such as via the phone) so that clarifications

and decisions regarding alternative approaches is possible. The team

will move sequentially down the Product Backlog in this way, until it’s

used up all its capacity. At the end of the meeting, the team will have

produced a list of tasks with estimates (typically in hours or fractions

One Item at a Time

During task generation and

estimation in Sprint Planning

it is not necessary – nor

appropriate – for Team

members to volunteer for all

the tasks “they can do best.”

Rather, it is better to only

volunteer for one task at a

time, when it is time to pick

up a new task and to

consider deliberately

choosing tasks that will

involve learning (perhaps by

pair work with a specialist).

30

of a day). The list is a starting point, but more tasks will emerge as

the Team addresses each Product Backlog item during the Sprint. The

Team will work on a technical design that will be implemented using

Sprint Backlog tasks. The team choses the ordering of Sprint Backlog

tasks to maximize the velocity of production and quality of “done”

functionality.

Scrum encourages multi-skilled workers, rather than only “working to

job title” such as a “tester” only doing testing. In other words, team

members “go to where the work is” and help out as possible. If there

are many testing tasks, then all Team members may help. This does

not imply that everyone is a generalist; no doubt some people are

especially skilled in testing (and so on) but Team members work

together and learn new skills from each

other. Pairing has proven a valuable

approach to sharing knowledge.

All that said, there are rare times when a

Team member may do a particular task

because it would take far too long or be

impossible for others to learn – perhaps

he or she is the only person with the

artistic skill to draw pictures. Other Team

members could not draw a “stick man” if

their lives depended on it. In this rare

case – and if it is not rare and not getting

rarer as the Team learns, there is

something wrong – it may be necessary to

ask if the total planned drawing tasks that

must be done by this certain Team

member are feasible within the short

No Changing Goals
There are powerful, positive

factors that arise from the

team being protected from

changing goals during the

Sprint:

First, the team gets to

work knowing with

absolute certainty that its

commitments will not

change, thus reinforcing

the team’s focus on

ensuring completion.

Second, it disciplines the

Product Owner into really

thinking through the items

he or she prioritizes on the

Product Backlog and offers

to the team for the Sprint.

31

Sprint.

One of the pillars of Scrum

is that once the Team

makes its commitment,

any additions or changes

must be deferred until the

next Sprint. This means

that if halfway through the

Sprint the Product Owner

decides there is a new

item he or she would like

the Team to work on, he

cannot make the change until the start of the next Sprint. If an

external circumstance appears that significantly changes priorities, and

means the Team would be wasting its time if it continued working, the

Product Owner or the team can terminate the Sprint. The Team stops,

and a new Sprint Planning meeting initiates a new Sprint. The

disruption of doing this is usually great; this serves as a disincentive

for the Product Owner or team to resort to this dramatic decision.

By following these Scrum rules the

Product Owner gains two things.

First, he or she has the confidence

of knowing the Team has made a

commitment to complete a realistic

and clear set of tasks they have

chosen. Over time a Team can

become quite skilled at choosing

and delivering on a realistic

commitment. Second, the Product

Many teams also make use of

a visual task-tracking tool, in

the form of a wall-sized task

board where tasks (written on

Post-It Notes) migrate during
the Sprint across columns

labeled:

“To Do,” “Doing,” and “Done.”

32

Owner gets to make whatever changes he or she likes to the Product

Backlog before the start of the next Sprint. At that point, additions,

deletions, modifications, and re-prioritizations are all possible and

acceptable. While the Product Owner is not able to make changes to

the selected items under development during the current Sprint, he or

she is only one Sprint’s duration or less away from making any

changes. Gone is the stigma around change – change of direction,

change of requirements, or just plain changing your mind – and it may

be for this reason that Product Owners are usually as enthusiastic

about Scrum as anyone.

Daily Standup

Once the Sprint has started, the Team

engages in another of the key Scrum

practices: The Daily Standup. This is a short

(15 minutes or less) meeting that happens

every workday at an appointed time and

place. Everyone on the Team attends. To

keep it brief, it is recommended that

everyone remain standing. It is the Team’s

opportunity to talk to each other and inspect

each other’s progress and obstacles. In the

Daily Standup, one by one, each member of

the team reports three (and only three)

things to the other members of the team:

33

• What did I do yesterday that helped the Development Team meet the Sprint

Goal?

• What will I do today to help the Development Team meet the Sprint Goal?

• Do I see any impediment that prevents me or the Development Team from

meeting the Sprint Goal?

Note that the Daily Standup is not a status meeting or a report to a

manager; it is a time for a self-organizing Team to share with each

other what is going on, to help it coordinate its work and optimize its

likelihood of meeting its commitments. Someone makes note of the

blocks, and the Scrum Master is responsible for helping team members

resolve them.

There is no chit-chat during the Daily Standup, only reporting answers

to the three questions; if discussion is required it takes place

immediately after the Daily Standup in a follow-up meeting, although

in Scrum no one is required to attend this. This follow-up meeting is a

common event where the Team adapts to the information they heard

in the Daily Standup: in other words, another inspect and adapt cycle.

It is generally recommended not to have managers or others in

positions of perceived authority attend the Daily Standup. This risks

making the Team feel “monitored” – under pressure to report major

progress every day (an unrealistic expectation), and inhibited about

reporting problems – and it tends to undermine the Team’s self-

management, and invite micromanagement. It would be more useful

for a stakeholder to instead reach out to the team following the

meeting, and offer to help with any blocks that are slowing the Team’s

progress.

34

Updating Sprint Backlog & Sprint Burndown Chart

Every day, the Team members update

their estimate of the amount of time

remaining to complete their current task

in the Sprint Backlog. Following this

update, someone adds up the points

remaining for the Team as a whole, and

plots it on the Sprint Burndown Chart.

This graph shows, each day, a new

estimate of how much work (measured

in relative points) remains until the Team’s tasks are finished. Ideally,

this is a downward sloping graph that is on a trajectory to reach “zero

effort remaining” by the last day of the Sprint. Hence it is called a

burndown chart. And while sometimes it looks good, often it does not;

this is the reality of product development. The important thing is that

it shows the Team their progress towards their goal, not in terms of

how much time was spent in the past (an irrelevant fact in terms of

progress), but in terms of how much work remains in the future –

what separates the Team from their goal.

35

If the burndown line is not tracking downwards towards completion by

mid-Sprint, the team needs to execute the Scrum Emergency

Procedure:

1. Change the approach to the work or remove impediments to

increase velocity.

2. Get help by having someone outside the team take some of

the backlog.

3. Reduce the scope of work.

Sprint Burndown Chart. While the Sprint Burndown chart can be created and

displayed using a spreadsheet, many teams find it is more effective to show it on

paper on a wall in their workspace, with updates in pen; this “low-tech/high-touch”

solution is fast, simple, and often more visible than a computer chart.

36

4. Abort the Sprint.

It is important that the Scrum Master coach the Team to take action

early rather than drifting into Sprint failure. Some Scrum Masters

insist that a Team reduce its commitments in early Sprints. Successful

Teams consistently improve by building on success. Failing Teams stay

stuck at low velocity.

Product Backlog Refinement

One of the lesser known, but valuable,

guidelines in Scrum is that five or ten percent

of each Sprint must be dedicated by the

Product Owner and the team to refining the

Product Backlog. This includes:

• Detailed requirements analysis

• Splitting large items into smaller ones

• Estimation of new items

• Re-estimation of existing items

A regularly scheduled Weekly meeting with the Product Owner is

enough for experienced Teams to refine the Product Backlog. This

refinement activity is not for items selected for the current Sprint; it is

for items for the future, most likely in the next one or two Sprints.

With this practice, Sprint Planning becomes relatively simple because

the Product Owner and Scrum Team start the planning with a clear,

well analyzed and carefully estimated set of items. A sign that this

refinement process is not being done (or not being done well) is that

Sprint Planning involves significant questions, discovery, or confusion.

37

Ending the Sprint

One of the core tenets of Scrum is that the duration of the Sprint is

never extended – it ends on the assigned date regardless of whether

the Team has completed the work it committed to. Teams typically

over-commit in the first few Sprints and fail to meet objectives. Teams

might then overcompensate and under-commit, and finish early. But

by the third or fourth Sprint, a Team typically has figured out what it

are capable of delivering (most of the time), and it will meet its Sprint

goals more reliably after that. Teams are encouraged to pick one

duration for Sprints (say, two weeks) and not change it. A consistent

duration helps the Team learn how much it can accomplish, which

helps in both estimation and longer-term release planning. It also

helps the Team achieve a rhythm for their work; this is often referred

to as the “heartbeat” of the team in Scrum.

Sprint Review

After the Sprint ends, there is the Sprint

Review, where the team reviews the

Sprint with the Product Owner. This is

often mislabeled the “demo” but that

does not capture the real intent of this

meeting. A key idea in Scrum is inspect

and adapt. To see and learn what is

going on and then evolve based on

feedback, in repeating cycles. The Sprint

Review is an inspect and adapt activity

for the product. It is a time for the

38

Product Owner and key stakeholders to learn what is going on with the

product and with the Team (that is, a review of the Sprint); and for

the Team to learn what is going on with the Product Owner and the

market. Consequently, the most important element of the Review is an

in-depth conversation and collaboration between the Team and

Product Owner to learn the situation, to get advice, and so forth. The

review includes a demo of what the Team built during the Sprint, but if

the focus of the review is a demo rather than conversation, there is an

imbalance.

Present at this meeting are the Product Owner, Team members, and

Scrum Master, plus customers, stakeholders, experts, executives, and

anyone else interested. The demo portion of the Sprint Review is not a

“presentation” the team gives – there is no slideware. A guideline in

Scrum is that as little time as possible should be spent on preparing

for the Sprint Review; Scrum suggests no more than 2 hours. It is

simply a demo of what has been built. Anyone present is free to ask

questions and give input.

39

The Sprint Retrospective

The Sprint Review involves

inspect

and adapt

regarding

the

product.

The Sprint

Retrospec

tive,

which

follows the Review, involves

inspect and adapt regarding

the process. This is a practice

that some teams skip which is

unacceptable, because self-

organization requires the

frequent regular reflection

provided by the Retrospective.

It’s the main mechanism for

taking the visibility that Scrum

provides into areas of

potential improvement, and

turning it into results. It’s an

opportunity for the entire

Scrum Team to discuss what’s

working and what’s not

working, and agree on

changes to try. Sometimes the

One Way To Do It….
A simple way to structure the Sprint

Retrospective is to draw four columns on

a whiteboard, labeled:

• What went well?

• What could have been better?

• Things to try?

• Issues to escalate?

Then go around the room, with each

person adding one or more items to the

lists. As items are repeated, check marks

are added next to them, so the common

items become clear. Then the team looks

for underlying causes, and agrees on a

small number of changes to try in the

upcoming Sprint, along with a

commitment to review the results at the

next Sprint Retrospective.

A useful practice at the end of the

Retrospective is for the team to label each

of the items in each column with either a

“C” if it is caused by Scrum (in other

words, without Scrum it would not be

happening), or an “E” if it is exposed by

Scrum (in other words, it would be

happening with or without Scrum, but

Scrum makes it known to the team), or a

“U” if it’s unrelated to Scrum (like the

weather). The team may find a lot of C’s on

the “What’s Working Well” side of the

board, and a lot of E’s on the “What Could

Work Better ”; this is good news, even if

the “What Could Work Better” list is a long

one, because the first step to solving

underlying issues is making them visible,

and Scrum is a powerful catalyst for that.

40

Scrum Master can act as an effective facilitator for the retrospective,

but it may be better to find a neutral outsider to facilitate the meeting;

a good approach is for Scrum Masters to facilitate each others’

retrospectives, which enables cross-pollination among teams.

Updating Release Backlog & Burndown Chart

At this point, some items have been finished, some have been added,

some have new estimates, and some have been dropped from the

release goal. The Product Owner is responsible for ensuring that these

changes are reflected in the Release Backlog (and more broadly, the

Product Backlog). In addition, Scrum includes a Release Burndown

chart that shows progress towards the release date. It is analogous to

the Sprint Burndown chart, but is at the higher level of items

(requirements) rather than fine-grained tasks. Since a new Product

Owner is unlikely to know why or how to create this chart, this is

another opportunity for a Scrum Master to help the Product Owner.

 Priority
Estimate of

value

Estimate

of Effort
1 2 3

As a user I want to put a book in

my cart (see UI sketches on wiki

page)

1 7 5 0 0 0

As a buyer I want to remove a

book from my shopping cart.
2 6 7 0 0 0

Improve transaction processing

performance (see metrics on

wiki)

3 6 13 13 0 0

Investigate solutions for speeding

up credit card transactions (see

metrics on wiki.

4 6 20 20 20 0

41

Upgrade all servers to latest

version of Apache
5 5 13 13 13 13

Diagnose and fix order processing

script errors (bugzilla ID 48133)
6 2 3 3 3 3

As a buyer I want to add items to

my wish list
7 7 40 40 40 40

As a buyer I want to delete items

on my wish list
8 4 20 20 20 20

And so on… … … … … … …

New estimate of effort remaining

at the end of each Sprint
 Total 537 580 570 500

Release Backlog (a subset of the Product Backlog)

0

50

100

150

200

250

300

350

400

450

500

550

600

0 2 4 6 8 10 12 14

S
to

r
y
 P

o
in

ts

Sprint

Release Burndown Chart

Actual

…

Ideal

42

Starting the Next Sprint

Following the Sprint Review, the Product Owner may update the

Product Backlog with any new insights. At this point, the Product

Owner and Team are ready to begin another Sprint cycle. There is no

down time between Sprints – teams normally go from a Sprint

Retrospective one afternoon into the next Sprint Planning the following

morning (or after the weekend).

One of the principles of agile development is “sustainable pace”, and

only by working regular hours at a reasonable level can teams

continue this cycle indefinitely.

Release Sprint

The perfection vision of Scrum is that the product is potentially

shippable at the end of each Sprint, which implies there is no wrap up

work required, such as testing or documentation. Rather, the

implication is that everything is completely finished every Sprint; that

you could actually ship it or deploy it immediately after the Sprint

Review.

However, many organizations have weak development practices and

cannot achieve this perfection, or there are other extenuating

circumstances (such as, “the machine broke”). In this case, there will

be some remaining work, such as final production environment

integration testing, and so there will be the need for a “Release Sprint”

to handle this remaining work. A goal of any Scrum Team is to

minimize the number of Release Sprints for completing “undone” work.

Undone work tends to accumulate exponentially and causes poor

product quality.

43

Release Planning & Initial Product Backlog Refinement

A question that is sometimes asked is how, in an iterative model, can

long-term release planning be done. There are two cases to consider:

1. A new product in its first release

2. An existing product in a later release

In the case of a new product, or an existing product just adopting

Scrum, there is the need to

do initial Product Backlog

refinement before the first

Sprint, where the Product

Owner and team shape a

proper Scrum Product

Backlog. This could take a

few days or a week, and

involves a vision workshop,

some detailed requirements

analysis, and estimation of

all the items identified for

the first release.

Surprisingly in Scrum, in the

case of an established

product with an established

Product Backlog, there

should not be the need for

any special or extensive release planning for the next release. Why?

Because the Product Owner and team should be doing Product Backlog

refinement every Sprint (five or ten percent of each Sprint),

“Change Thyself!”
One common mistake teams make, when

presented with a Scrum practice that

challenges them, is to change Scrum, not

change themselves. For example, teams

that have trouble delivering on their Sprint

commitment might decide to make the

Sprint duration extendable, so they never

run out of time – and in the process,

ensure they never have to learn how to do

a better job of estimating and managing

their time. In this way, without coaching

and the support of an experienced Scrum

Master, organizations can mutate Scrum

into just a mirror image of its own

weaknesses and dysfunction, and

undermine the real benefit that Scrum

offers: making visible the good and the

bad, and giving the organization the choice

of elevating itself to a higher level.

44

continuously preparing for the future. This continuous product

development mode obviates the need for the dramatic punctuated

prepare-execute-conclude stages one sees in traditional sequential life

cycle development.

During an initial Product Backlog refinement workshop and during the

continuous backlog refinement each Sprint, the Team and Product

Owner will do release planning, refining the estimates, priorities, and

content as they learn.

Some releases are date-driven; for example: “We will release version

2.0 of our project at a trade-show on November 10.” In this situation,

the team will complete as many Sprints (and build as many features)

as is possible in the time available. Other products require certain

features to be built before they can be called complete and the product

will not launch until these requirements are satisfied, however long

that takes. Since Scrum emphasizes producing potentially shippable

code each Sprint, the Product Owner may choose to start doing interim

releases, to allow the customer to reap the benefits of completed work

sooner.

Since they cannot possibly know everything up front, the focus is on

creating and refining a plan to give the release broad direction, and

clarify how tradeoff decisions will be made (scope versus schedule, for

example). Think of this as the roadmap guiding you towards your final

destinations; which exact roads you take and the decisions you make

during the journey may be determined en route.

Most Product Owners choose one release approach. For example, they

will decide a release date, and will work with the team to estimate the

Release Backlog items that can be completed by that date. In

45

situations where a “fixed price / fixed date / fixed deliverable”

commitment is required – for example, contract development – one or

more of those parameters must have a built-in buffer to allow for

uncertainty and change; in this respect, Scrum is no different from

other approaches. The advantage of Scrum is that new requirements

can easily be added into the release at sprint boundaries as long as

low prority requirements scheduled later can be removed and still keep

the project on time and on budget.

Application or Product Focus

For applications or products – either for the market or for internal use

within an organization – Scrum moves groups away from the older

project-centric model toward a continuous application/product

development model. There is no longer a project with a beginning,

middle, and end. And hence no traditional project manager. Rather,

there is simply a stable Product Owner and a long-lived self- managing

Team that collaborate in an “endless” series of two or four-week

Sprints, until the product or application is retired. All necessary

“project” management work is handled by the Team and the business

owner—who is an internal business customer or from Product

Management. It is not managed by an IT manager or someone from a

Project Management Office.

Scrum can also be used for true projects that are one-time initiatives

(rather than work to create or evolve long-lived applications); still, in

this case the team and Product Owner do the project management.

What if there is insufficient new work from one or more existing

applications to warrant a dedicated long-lived Team for each

46

application? In this case, a stable long-lived Team may take on items

from one application in one Sprint, and then items from another in the

next Sprint; in this situation the Sprints are often quite short, such as

one week.

Occasionally, there is insufficient new work even for this last solution,

and the Team may take on items from several applications during the

same Sprint; however, beware this solution as it may devolve into

unproductive multitasking across multiple applications. A basic

productivity theme in Scrum is for the Team to be focused on one

product or application for one Sprint.

Common Challenges

Scrum is not only a concrete set of practices – rather, and more

importantly, it is a framework that provides visibility to the Team, and

a mechanism that allows them to “inspect and adapt” accordingly.

Scrum works by making visible the dysfunction and impediments that

are impacting the Product Owner and the Team’s effectiveness, so that

they can be addressed. For example, the Product Owner may not

really know the market, the features, or how to estimate their relative

business value. Or the Team may be unskilled in effort estimation or

development work.

The Scrum framework will quickly reveal these weaknesses. Scrum

does not solve the problems of development; it makes them painfully

visible, and provides a framework for people to explore ways to

resolve problems in short cycles and with small improvement

experiments.

47

Suppose the team fails to deliver what they committed to in the first

Sprint due to poor task analysis and estimation skill. To the team, this

feels like failure. But in reality, this experience is the necessary first

step toward becoming more realistic and thoughtful about their

commitments. This pattern – of Scrum helping make visible

dysfunction, enabling the team to do something about it – is the basic

mechanism that produces the most significant benefits that teams

using Scrum experience.

Another common mistake is to assume that a practice is discouraged

or prohibited just because Scrum does not specifically require it. For

example, Scrum does not require the Product Owner to set a long-

term strategy for his or her product; nor does it require engineers to

seek advice from more experienced engineers about complex technical

problems. Scrum leaves it to the individuals involved to make the right

decision; and in most cases, both of these practices (along with many

others) are well advised.

Distributed, Outsourced Scrum

US, European, and Japanese companies often outsource software

development to Eastern Europe, Russia, or the Far East. Typically,

remote teams operate independently and communication problems

limit productivity. While there is a large amount of published research

on project management, distributed development, and outsourcing

strategies as isolated domains, there are few detailed studies of best

project management practices on large systems that are both

distributed and outsourced.

Distributed Team Models

48

Here we consider three distributed Scrum models commonly observed

in practice:

Isolated Scrums - Teams are isolated across geographies. In most

cases off-shore teams are not cross-functional and may not be using

the Scrum process.

Distributed Scrum of Scrums – Scrum teams are isolated across

geographies and integrated by a Scrum of Scrums that meets regularly

across geographies.

Totally Integrated Scrums – Scrum teams are cross- functional with

members distributed across geographies. In the SirsiDynix case (see

chapter 5), the Scrum of Scrums was localized with all Scrum Masters

in Utah.

Most outsourced development efforts use a degenerative form of the

Isolated Scrums model where outsourced teams are not cross-

functional and not Agile. Requirements may be created in the U.S. and

developed in Dubai, or development may occur in Germany and quality

assurance in India. Typically, cross-cultural communication problems

are compounded by differences in work style in the primary

organization vs. the outsourced group. In the worst case, outsourced

teams are not using Scrum and their productivity is typical of waterfall

projects further delayed by cross-continent communications lag time.

This model partitions work across cross-functional, isolated Scrum

teams while eliminating most dependencies between teams. Scrum

teams are linked by a Scrum-of-Scrums where Scrum Masters (team

leaders/project managers) meet regularly across

49

locations. This encourages communication, cooperation, and cross-

fertilization and is appropriate for newcomers to Agile development.

An Integrated Scrums model has all teams fully distributed and each

team has members at multiple locations. While this appears to create

communication and coordination burdens, the daily Scrum meetings

help to break down cultural barriers and disparities in work styles. On

large enterprise implementations, it can organize the project into a

single whole with an integrated global code base. Proper

implementation of this approach provides location transparency and

performance characteristics similar to small co-located teams.

50

Part Three

Scrum at Work

51

Chapter Four

Scrum Cases

This chapter serves as a retrospective on the origins of Scrum,

its evolution in different companies, and a few key learnings

along the way. It will provide a reference point for further

investigation and implementation of Scrum.

Case 1: Easel Corporation

The First Scrum

Scrum was started in 1993 for software teams at Easel Corporation,

where Jeff Sutherland was VP of object technology hired as chief

engineer to lead a small team developing the first object-oriented

design and analysis tool that incorporated round-trip engineering and

automated object-relational mapping in enterprise development.

“There were some key factors that influenced the introduction of

Scrum at Easel Corporation. The book Wicked Problems, Righteous

Solutions by Peter DeGrace and Leslie Hulet Stahl reviewed the

reasons why the waterfall approach to software development does not

work for software development today. Requirements are not fully

understood before the project begins. The users know what they want

only after they see an initial version of the software. Requirements

change during the software construction process. And new tools and

technologies make implementation strategies unpredictable. DeGrace

and Stahl reviewed “All-at-Once” models of software development,

which uniquely fit object-oriented implementation of software and help

to resolve these challenges.

52

All-at-Once model

All-at-Once models of software development assume that the creation

of software is done by simultaneously working on requirements,

analysis, design, coding, and testing and then delivering the entire

system all at once. The simplest All-at-Once model is a single super-

programmer creating and delivering an application from beginning to

end. All aspects of the development process reside in a single person’s

head. This is the fastest way to deliver a product that has good

internal architectural consistency, and it is the hacker’s mode of

implementation. The next level of approach to All-at-Once

development is handcuffing two programmers together, as in the XP

practice of pair programming.

Two developers deliver the entire system together. This is been shown

to deliver better code (in terms of usability, maintainability, flexibility,

and extendability) faster than work delivered by larger teams. The

challenge is to achieve a similar overall productivity effect with an

entire team and then with teams of teams.

Our team-based All-at-Once model was based on both the Japanese

approach to new product development, Sashimi, and Scrum. We were

already using production prototyping to build software. It was

implemented in slices (Sashimi) where an entire piece of fully

integrated functionality worked at the end of an iteration. What

intrigued us was Hirotaka Takeuchi and Hujiro Nonaka’s description of

the team-building process in setting up and managing a Scrum. The

idea of building a self-empowered team in which everyone had a global

view of the product on a daily basis seemed like the right idea. This

approach to managing the team, which had been so successful at

53

Honda, Canon, and Fujitsu, resonated with the systems thinking

approach being promoted by Peter Senge at MIT.

We were also impacted by recent publications in computer science. As

I alluded above, Peter Wagner at Brown University demonstrated that

it was impossible to fully specify or test an interactive system, which is

designed to respond to external inputs (Wegner's lemma). Here was

mathematical proof that any process that assumed known inputs, as

does the waterfall method, was doomed to failure when building an

object-oriented system.

We were prodded into setting up the first Scrum meeting after reading

James Coplien's paper on Borland's development of Quattro Pro for

Windows. The Quattro team delivered one million lines of C++ code in

31 months, with a four person staff growing to eight people later in the

project. This was about a thousand lines of deliverable code per person

per week, probably the most productive project ever documented. The

team attained this level of productivity by intensive interaction in daily

meetings with project management, product management, developers,

documenters, and quality assurance staff.

Software Evolution and Punctuated Equilibrium

Our daily meetings at Easel were disciplined in a way that we now

understand as the Scrum pattern. The most interesting effect of Scrum

on Easel's development environment was an observed "punctuated

equilibrium effect." A fully integrated component design environment

leads to rapid evolution of a software system with emergent, adaptive

properties, resembling the process of punctuated equilibrium observed

in biological species.

54

By having every member of the team see every day what every other

team member was doing, we began to see how we could accelerate

each other's work. For instance, one developer commented that if he

changed a few lines in code, he could eliminate days of work for

another developer. This effect was so dramatic that the project

accelerated to the point where it had to be slowed down. This

hyperproductive state was seen in several subsequent Scrums, but

never went so dramatic as the one at Easel.

Achieving a Sustainable HyperProductive State

The key to entering a hyperproductive state was not just the Scrum

organizational pattern. It was a combination of:

• The skill of the team

• The flexibility of a Smalltalk development environment

• The implementation of what are now know as XP engineering

practices

• The way we systematically stimulated production prototypes that

rapidly evolved into a deliverable product.

Furthermore, in the hyperproductive state, the initial Scrum entered

what professional athletes and martial artists call "the zone." No

matter what happened or what problems arose, the response of the

team always was far better than the response of any individual. It was

reminiscent of the Celtics basketball team at their peak, when they

could do no wrong. The impact of entering the zone was not just

hyperproductivity. People’s personal lives were changed. Team

members said they would never forget working on the project, and

they would always be looking for another experience like it. It induced

open, team-oriented, fun-loving behavior in unexpected persons.

Those individuals who could not function well in an open,

55

hyperproductive environment self-selected themselves out of the team

by finding other jobs. This reinforced positive team behavior similar to

biological systems, which select for fitness to the environment,

resulting in improved performance of individual organisms.”

Case 2: VMARK

The First Senior Management Scrum

When Easel Corporation was acquired by VMARK (subsequenctly

Informix, Ascension Software, and now IBM) the original Scrum team

continued its work on the same product. The VMARK senior

management team was intrigued by Scrum and asked Jeff Sutherland

to run a weekly senior management team Scrum to drive all the

company’s products to the Internet.

“These meetings started in 1995, and within a few months, the team

had caused the introduction of two new Internet products and

repositioned current products as Internet applications. Some members

of this team left VMARK to become innovators in emerging Internet

companies, so Scrum had an early impact on the Internet.

It was also at VMARK that Ken Schwaber was introduced to Scrum.

Ken and I had worked together on and off for years. I showed him

Scrum and he agreed it worked better than other project management

approaches and was similar to how he built project management

software in his company. He quickly sold off the project management

software business and worked on bringing Scrum to the software

industry at large. His work has had an incredible effect on deploying

Scrum worldwide.”

Case 3: Individual, Inc.

56

The First Internet Scrum
In the spring of 1996, Jeff Sutherland returned to Individual, Inc., a

company he co-founded as VP of Engineering in 1988. Much of the

Scrum experience at Individual has been documented by Ken

Schwaber:

“The most impressive thing to me about Scrum at Individual was not

that the team delivered two new Internet products – and multiple

releases of one of the products – in a single quarter. It was the fact

that Scrum eliminated several hours a day of senior management

meeting time starting the day that Scrum began, within a week of my

arrival at the company.”

Because Individual had just gone public at the beginning of the

Internet explosion, there were multiple competing priorities and

constant revision of market strategy. As a result, the development

team was constantly changing priorities and unable to deliver product.

The management team was meeting daily to determine status of

priorities that were viewed differently by every manager. These

meetings were eliminated and the Scrum meetings became the focus

for all decision making.

It was incredibly productive to force all decisions to occur in the daily

Scrum meeting. If anyone wanted to know the status of specific

project deliverables or wanted to influence any priority, he or she

could only do it in the daily Scrum meeting. I remember the senior VP

of marketing sat in on every meeting for a couple of weeks sharing her

desperate concern about meeting Internet deliverables and timetables.

The effect on the team was not to immediately respond to her despair.

Over a period of two weeks, the team self- organized around a plan to

57

meet her priorities with achievable technical delivery dates. When she

agreed to the plan, she no longer had to attend any Scrum meetings.

The Scrum reported status on the Web with green lights, yellow lights,

and red lights for all pieces of functionality. In this way, the entire

company knew status in real time, all the time. This transparency of

information has become a key characteristic of Scrum.”

Case 4: IDX Systems

The First Scrum in the Large

During the summer of 1996, IDX Systems hired Jeff Sutherland as

senior VP of engineering and product development. IDX had over

4,000 customers and was one of the largest US healthcare software

companies, with hundreds of developers working on dozens of

products. Here was an opportunity to extend Scrum to large-scale

development.

“The approach at IDX was to turn the entire development group into

an interlocking set of Scrums. Every part of the organization was team

based including the management team, which included two vice

presidents, a senior architect, and several directors. Front-line Scrums

met daily. A Scrum of Scrums, which included the team leaders of

each Scrum in a product line, met weekly, The management Scrum

met monthly.

The key learning at IDX was that Scrum scales to any size. With

dozens of teams in operation, the most difficult problem was ensuring

the quality of the Scrum process in each team, particularly when the

entire organization had to learn Scrum all at once. IDX was large

enough to bring in productivity experts to monitor throughput on every

58

project. While most teams were only able to double the industry

average in function points per month delivered, several teams moved

into a hyperproductive state, producing deliverable functionality at four

to five times the industry average. These teams became shining stars

in the organization and examples for the rest of the organization to

follow.

One of the most productive teams at IDX was the Web Framework

team that built a web front-end infrastructure for all products. The

infrastructure was designed to host all IDX applications, as well as

seamlessly interoperate with end user or third party applications. It

was a distributed team with developers in Boston, Seattle, and

Vermont who met by teleconference in a daily Scrum meeting. The

geographic transparency of this model produced the same high

performance as co-located teams and has become the signature of

hyperproductive distributed/outsourced Scrums.”

The innovation and quality of this team’s work continued to be

demonstrated ten years later when IDX was acquired by GE Healthcare.

The web framework was selected as the standard for GE applications.

Case 5: PatientKeeper

The First Scrum Company

In early 2000, Jeff Sutherland joined PatientKeeper, Inc. as chief

technology officer and began introducing Scrum into a startup

company. He was the 21st employee, and the development team grew

from a dozen people to 45 people in six months. “PatientKeeper

deploys mobile devices in healthcare institutions to capture and

process financial and clinical data. Server technology synchronizes the

59

mobile devices and moves data to and from multiple back-end legacy

systems. A robust technical architecture provides enterprise

application integration to hospital and clinical systems. Data is

forward-deployed from these systems in a PatientKeeper clinical

repository. Server technologies migrate changes from our clinical

repository to a cache and then to data storage on the mobile device.

PatientKeeper proves that Scrum works equally well across technology

implementations.

The key learning at PatientKeeper involved the introduction of eXtreme

Programming techniques as a way to implement code delivered by a

Scrum organization. While all teams seem to find it easy to implement

a Scrum organizational process, they do not always find it easy to

introduce XP. We were able to do some team programming and

constant testing and refactoring, particularly as we migrated all

development to Java and XML. It was more difficult to introduce these

ideas when developers were working in C & C++. After a year of

Scrum meetings in all areas of development, processes matured

enough to capitalize on Scrum project management techniques, which

were fully automated.

Complete automation and transparency of data allowed PatientKeeper

to multithread Sprints through multiple teams. That in combination

with implementing a MetaScrum of senior stakeholders in the company

allowed PatientKeeper to run from top to bottom as a Scrum and

become the first Scrum company to enter the hyperproductive state,

delivering over 45 production releases a year of a large enterprise

software platform. This became the prototype for the All-at-Once, or

Type C Scrum, implemented in at least five companies by 2006.

60

PatientKeeper was the first company to achieve a hyperproductive

revenue state driven by Scrum in 2007. Revenue quadrupled from 13M

to 50M in one year.”

61

Other Prominent Projects

One of the most interesting things about Scrum is the unique case

studies that have been published at IEEE conferences. Scrum is used

by some of the most productive, high maturity, and most profitable

software development teams in the world. Scrum powers:

The most productive large development project ever documented (see

next chapter).

The most unique CMMI Level 5 implementation on the planet.

The most profitable software development project in the history of

software development.

Systematic Software Engineering – a unique CMMI Level 5

implementation

Systematic Software Engineering in Aarhus, Denmark, spent seven

years and over 100,000 person hours of process engineers to achieve

CMMI Level 5 certification, reduce rework by 80%, and improve

productivity by 31%. Within six months after a Scrum Certification

course they had reduced planning time by 80%, defects by 40%, total

cost of a project by 50% while simultaneously enhancing customer and

employee satisfaction. They now bid Scrum projects at 50% of the

cost of waterfall projects.

62

Google AdWords – the

most profitable

development project in

history

One of the most interesting

Scrum projects is Google’s

AdWords implementations.

This application drives the

majority of Google revenue

growth and helps create

market capitalization that is

higher than Intel and just

below that of Chevron, the

most profitable oil company

in the world. The AdWords

project, powered by Scrum,

has distributed teams in five

locations and interfaces with

virtually all Google products

on every release. As a result,

the Google project manager

needed to insert more

structure than is usually

associated with Google

teams. His seamless

introduction of Scrum based

on resolving the highest

priority impediments

observed by the teams

resulted in an

Results From a Scrum Project at Yahoo!
How does Scrum work, compared to the

approach which was used previously at the

company?

Productivity: 68% of respondents reported

Scrum is better or much better (4 or 5 on a 5-

point scale); 5% reported Scrum is worse or

much worse (1 or 2 on a 5-point scale); 27%

reported Scrum is about the same (3 on a 5-

point scale).

Team Morale: 52% of respondents reported

Scrum is better or much better; 9% reported

Scrum is worse or much worse; 39% reported

Scrum is about the same.

Adaptability: 63% of respondents reported

Scrum is better or much better; 4% reported

Scrum is worse or much worse; 33% reported

Scrum is about the same.

Accountability: 62% of respondents reported

Scrum is better or much better; 6% reported

Scrum is worse or much worse; 32% reported

Scrum is about the same.

Collaboration and Cooperation: 81% of

respondents reported Scrum is better or much

better; 1% reported Scrum is worse or much

worse; 18% reported Scrum is about the

same.

Team Productivity: Increased on average

by 37%, based on the estimates of the

Product Owners.

Buy In: 86% of team-members stated that they

would continue using Scrum if the decision were

solely up to them.

(Based on a quarterly survey 2007,

including everyone at Yahoo! using Scrum,

i.e. Product Owners, Team Members, Scrum

Masters, and the functional managers of

those individuals.)

63

implementation that no longer needed a Scrum Master to function. The

teams ran by themselves.

Chapter Five

The SirsiDynix case

This case study summarizes an extraordinary distributed

project that ran smoothly across ten time zones.

It may seem improbable, but during the most productive Java project

ever documented, the 56 developers from SirsiDynix and StarSoft

Development Laboratories had an ocean and half a continent between

them. Working from Provo in Utah, Waterloo in Canada and St.

Petersburg in Russia, the distributed team delivered 671,688 lines of

production Java code during 2005. In total, the Java application

consisted of over 1,000,000 lines of code. This proves that a large,

distributed, outsourced team actually can achieve a hyperproductive

state – in this case 15.3 function points per developer & month.

Best practices for distributed Scrum seen on this project consisted of:

daily Scrum team meetings of all developers from multiple sites

daily meetings of the Product Owner team hourly automated builds

from one central repository no distinction between developers at

different sites on the same team seamless integration of XP practices

like pair programming with Scrum

The Companies

64

SirsiDynix has approximately 4,000 library and consortia clients,

serving over 200 million people through over 20,000 library outlets in

the Americas, Europe, Africa, the Middle East and Asia-Pacific. Jack

Blount, President and CEO of Dynix and now CTO of the merged

SirsiDynix company, negotiated an outsource agreement with StarSoft

who staffed the project with over 20 qualified engineers in 60 days.

Significant development milestones were completed in a few weeks

and joint development projects are efficiently tracked and continue to

be on schedule.

StarSoft Development Labs, Inc. is a software outsourcing service

provider in Russia and Eastern Europe. Headquartered in Cambridge,

Massachusetts, USA, StarSoft operates development centers in St.

Petersburg, Russia and Dnepropetrovsk, Ukraine, employing over 450

professionals. StarSoft has experience handling development efforts

varying in size and duration from just several engineers working for a

few months to large-scale projects involving dozens of developers and

spanning several years. StarSoft successfully uses Agile development

and particularly XP engineering practices to maintain CMMI Level 3

certification and was acquired by Exigen Services in 2007.

A Huge Task at Hand

SirsiDynix was confronted with the requirement to completely re-

implement a legacy library system with over 12,500 installed sites.

Large teams working over many years in a changing business

environment faced many new requirements in the middle of the

project. To complicate matters further, the library software industry

was in a consolidating phase. Dynix started the project in 2002 and

merged with Sirsi in 2005 to form SirsiDynix.

65

Fortunately, Dynix started with a scalable Agile process that could

adapt to changing requirements throughout the project. Time to

market demanded more than doubling of output. That could only

happen by augmenting resources with Agile teams. StarSoft was

selected because of their history of successful XP implementations and

their experience with systems level software.

The combination of high risk, large scale, changing market

requirements, merger and acquisition business factors, and the

SirsiDynix experience with Scrum combined with StarSoft success with

XP led them to choose an Integrated Scrums implementation. Jack

Blount's past experience with Agile development projects at US Data

Authority, TeleComputing and JD Edwards where he had used Isolated

Scrums and Distributed Scrum of Scrums models did not meet his

expectations. This was a key factor in his decision to structure the

project as Integrated Scrums.

The Systems and Software Consortium (SSCI) has outlined drivers,

constraints, and enablers that force organizations to invest in real-time

project management information systems. Scalable Scrum

implementations with minimal tooling are one of the best real-time

information generators in the software industry.

SSCI complexity drivers are described as:

• Increasing problem complexity shifting focus from

requirements to objective capabilities that must be met by larger

teams and strategic partnerships.

• Increasing solution complexity, which shifts attention from

platform architectures to enterprise architectures and fully

integrated systems.

66

• Increasing technical complexity from integrating standalone

systems to integrating across layers and stacks of

communications and network architectures.

• Increasing compliance complexity shifting from proprietary to

open standards.

• Increasing team complexity shifting from a single implementer

to strategic teaming and mergers and acquisitions.

SirsiDynix faced all of these issues. Legacy products were difficult to

sell to new customers. They needed a new product with complete

functionality for the library enterprise based on new technologies that

were highly scalable, easily expandable, and used the latest computer

and library standards,

Top Issues in Distributed Development

The SSCI has carefully researched top issues in distributed

development, all of which had to be handled by SirsiDynix and

StarSoft.

• Strategic: Difficulty leveraging available resources, best

practices are often deemed proprietary, are time consuming and

difficult to maintain.

• Project and process management: Difficulty synchronizing

work between distributed sites.

• Communication: Lack of effective communication mechanisms.

• Cultural: Conflicting behaviors, processes, and technologies.

Technical: Incompatible data formats, schemas, and standards.

• Security: Ensuring electronic transmission confidentiality and

privacy.

67

The unique way in which SirsiDynix and StarSoft implemented an

Integrated Scrums model carefully addressed all of these issues.

Solution: Integrated Scrums

SirsiDynix used the three scrum roles – Scrum Master, Product Owner

& Team – to solve the strategic distribution problem of building a high

velocity, real-time reporting organization with an open source process

that is easy to implement and low-overhead to maintain.

For large programs, a Chief Scrum Master to run a Scrum of

Scrums and a Chief Product Owner to centrally manage a single

consolidated and prioritized product backlog is essential. SirsiDynix

located the Scrum of Scrums and the Product Owner teams in Utah.

Team Formation

The second major challenge for large projects is process management,

particularly synchronizing work between sites. This was achieved by

splitting teams across sites and fine tuning daily Scrum meetings.

Teams at SirsiDynix were split across the functional areas needed

for an integrated library system. Half of a Scrum team is typically in

Provo, Utah, and the other half in St. Petersburg. There are usually 3-

5 people on the Utah part of the team and 4 or more on the St.

Petersburg portion of the team. The Search and Reporting Teams are

smaller. There are smaller numbers of team members in Seattle,

Denver, St. Louis, and Waterloo, Canada.

Scrum Meetings

Teams meet across geographies at 7:45am Utah time which is 17:45

St. Petersburg time. Teams found it necessary to distribute answers to

68

the three Scrum questions in writing before the Scrum meeting. This

shortens the time needed for the join meeting teleconference and

helps overcome any language barriers. Each individual reports on what

they did since the last meeting, what they intend to do next, and what

impediments are blocking their progress.

Email exchange on the three questions before the daily Scrum

teleconference was used throughout the project to enable phone

meetings to proceed more smoothly and efficiently. These daily team

calls helped the people in Russia and the U.S. learn to understand

each other. In contrast, most outsourced development projects do not

hold formal daily calls and the communication bridge is never formed.

Local sub-teams have an additional standup meeting at the beginning

of the day in St. Petersburg. Everyone uses the same process and

technologies and daily meetings coordinate activities within the teams.

Scrum Masters are all in Provo, Utah or Waterloo, Canada, and

met in a Scrum of Scrums every Monday morning. Here work is

coordinated across teams. Architects are directly allocated to

production Scrum teams and all located in Utah. An Architecture group

also meets on Monday after the Scrum of Scrums meeting and controls

the direction of the project architecture through the Scrum meetings.

A Product Owner resident in Utah is assigned to each Scrum team. A

chief Product Owner meets regularly with all Product Owners to assure

coordination of requirements.

SirsiDynix achieved strong central control of teams across geographies

by centrally locating Scrum Masters, Product Owners, and Architects.

This helped them get consistent performance across distributed teams.

69

Sprints

Sprints are two weeks long on the SirsiDynix project. There is a Sprint

planning meeting similar to an XP release planning meeting in which

requirements from User Stories are broken down into development

tasks. Most tasks require a lot of questions from the Product Owners

and some tasks take more time than initial estimates.

The lag time for Utah Product Owner response to questions on User

Stories forces multitasking in St. Petersburg and this is not an ideal

situation. Sometimes new tasks are discovered after querying Product

Owners during the Sprint about feature details.

Code is feature complete and demoed at the end of each Sprint.

Up until 2006, if it met the Product Owner’s functional requirement, it

was considered done, although full testing was not completed. It was

not deliverable code until SirsiDynix strengthened its definition of

“done” to include all testing in 2006. Allowing work in progress to

cross Sprint boundaries introduces wait times and greater risk into the

project. It violates the lean principle of reducing work in progress and

increases rework.

Product Specifications

Requirements are in the form of User Stories used in many Scrum and

XP implementations. Some of them are lengthy and detailed, others

are not. A lot of questions result after receiving the document in St.

Petersburg which are resolved by daily Scrum meetings, instant

messaging, or email.

For this project, St. Petersburg staff like a detailed description because

the system is a comprehensive and complex system designed for

70

specialized librarians. As a result, there is a lot of knowledge that

needs to be embedded in the product specification.

The ways libraries work in St. Petersburg are very different than

English libraries. Russian libraries operate largely via manual

operations. While processes look similar to English libraries on the

surface, the underlying details are quite different. Therefore, user

stories do not have sufficient detail for Russian programmers.

71

if it

<cr>.

72

Testing

Developers write unit tests. The Test team and Product Owners do

manual testing. An Automation Test team in Utah creates scripts for

an automated testing tool. Stress testing is as needed.

During the Sprint, the Product Owner tests features that are in the

Sprint backlog. Up until 2006, testers received a stable Sprint build

only after the Sprint demo.

There are 30 team members in North America and 26 team members

in St. Petersburg on this project. The St. Petersburg team has one

project leader, 3 technical team leaders, 18 developers, 1 test lead,

and 3 testers. This low tester/developer ratio initially made it

impossible to have a fully tested package of code at the end of the

Sprints.

The test-first approach was initially encouraged and not mandated.

Tests were written simultaneously with code most of the time. GUIs

were not unit tested.

Functional Test Example:

Functional Area Reserve Book Room

Task Description
Check that items from Item List is placed under Reserve with “Inactive”

status

Condition
1. User has right to place Items under Reserve

2. At least one Item List exists in the system

3. Default Reserve Item Status in Session Defaults is set to ”Inactive”

73

Entry Point Launcher is opened

Test Data No specific data

Action

1. Reserve > Reserve Item

2. Select “Item Search” icon

3. Select “Item List” in the Combo box list of search options and enter

appropriate Item list name

4. Press Enter

5. Select all Items which appear in the Item Search combo box and press

“OK”

Expected Results

1. Items that were in Item list should appear in the list in Reserve Item

2. Status of all items that has been just added should be shown as

“Inactive”

3. Save button should be inactive

4. All corresponding Items should retain their original parameters

In the summer of 2006, a new CTO of SirsiDynix, Talin Bingham, took

over the project and introduced Test Driven Design. Every Sprint starts

with the usual Sprint Planning meeting and teams are responsible for

writing functional tests before doing any coding. Once functional tests

are written and reviewed, coding starts. Test-first coding is mandated.

When coding is complete, developers run unit tests and manually pass

all the functional tests before checking in changes to the repository.

Automation testing is done using the Compuware TestPartner tool,

but there is still room for improvement of test coverage.

Configuration Management

SirsiDynix was using CVS as source code repository when the decision

was made to engage an outsourcing firm. At that time, SirsiDynix

made a decision that CVS could not be used effectively because of lack

of support for distributed development, largely seen in long code

74

synchronization times. Other tools were evaluated and Perforce was

chosen as the best solution.

StarSoft had seen positive results on many projects using Perforce.

It is fast, reliable and offers local proxy servers for distributed teams.

Although not a cheap solution, it has been very effective for the

SirsiDynix project.

Automated builds run every hour with email generated back to

developers. It takes 12 minutes to do a build, 30 minutes if the

database changes. StarSoft would like to see faster builds and true

concurrent engineering. Right now builds are only stable every two

weeks at Sprint boundaries.

Pair Programming, Refactoring, and Other XP Practices
StarSoft is an XP company and tries to introduce XP practices into all

their projects. Pair programming is done on more complicated pieces

of functionality. Refactoring was planned for future Sprints and not

done in every iteration as in XP. Some radical refactoring without loss

of functionality occurred as the project approached completion.

Continuous integration is implemented as hourly builds.

On this project, these three engineering practices were used with

Scrum as the primary project management methodology.

Measuring Progress

The project uses the Jira issue tracking and project management

software. This gives everyone on the project a real-time view into the

state of Sprints. It also provides comprehensive management

reporting tools.

75

Data from Jira can be downloaded into Excel to create any requested

data analysis. High velocity projects need an automated tool to track

status across teams and geographies. The best tools support bug

tracking and status of development tasks in one system and avoid

extra work on data entry by developers. Such tools should track tasks

completed by developers and work remaining. They provide more

detailed and useful data than time sheets, which should be avoided.

Time sheets are extra overhead that do not provide useful information

on the state of the project, and are de-motivating to developers.

76

Resulting Context with Integrated Scrums

Collaboration of SirsiDynix and StarSoft turned the Horizon 8.0 project

into one of the most productive Scrum projects ever documented. For

example, data is provide in the table below on a project that was done

initially with a waterfall team and then re- implemented with a Scrum

team. The waterfall team took 9 months with 60 people and generated

54000 lines of code. It was re- implemented by a Scrum team of 4.5

people in 12 months. The resulting 50,803 lines of code had more

functionality and higher quality.

Capers Jones of Software Productivity Research has published

extensive tables on average number of function points per lines of

code for all major languages. Since the average lines of code per

function point for Java is 53, we can estimate the number of function

points in the Scrum application. The waterfall implementation is

known to have fewer function points.

Distributed teams working on Horizon 8.0 generated 671,688 lines

of code in 14.5 months with 56 people. During this period they

radically refactored the code on two occasions and reduced the code

base by 275,000. They have not been penalized for refactoring as

that is rarely done in large waterfall projects in the database from

 Scrum Waterfall SirsiDynix

Person Months 54 540 827

Java LOC 50.083 54000 671.688

Function Points 959 900 12673

FP per dev/
month

17.8 2.0 15.3

77

which Capers derived his numbers. They have also not been

rewarded for refactoring even though reducing lines of code is viewed

as important as adding new code on well-run Agile projects.

Jones has also shown from his database of tens of thousands of

projects that industry average productivity is 12.5 function points per

developer/month for a project of 900 function points and that this

drops to 3 for a project with 13000 function points. Some of this is

due to 4GL and other code-automation tools used on small projects,

many of which are not implemented in third generation languages

like Java.

The SirsiDynix project is almost as productive as the small Scrum

project with a collocated team of 4.5 people. For a globally dispersed

team, it is one of the most productive projects ever documented at a

run rate of five times industry average.

78

CHAPTER 6

Can Scrum projects fail?

Let’s face it: although the success rate is astonishingly high,

scrum projects sometimes fail – most often due to poor

leadership.

Scrum can be seen as a framework for

continuous process improvement.

Harvard Professor John Kotter notes that

70% of change processes fail, primarily

due to a lack of sense of urgency among

the leadership.

Scrum is very resilient with a success rate of over 70% according to

the latest worldwide survey of over 2000 companies (Version One

survey). Yet it is not a silver bullet and leadership failure is the

primary cause of Scrum failure. Let’s look at two examples.

Case Study 1: “EmbeddedWaterFall.com”
- Roman Pichler of Pichler Consulting Ltd., London

At a development organization specializing in embedded

communications products, the head of development was determined to

implement Scrum in order to get faster delivery, higher quality from

software teams. Let’s call this company EmbeddedWaterFall.com. A

pilot project to create a new software system was selected. Success

would strongly influence the future of the development organization.

79

Product management at EmbeddedWaterFall.com was skeptical about

Agile processes. Three Scrum teams created an architectural

baseline/internal release in six months of two-week iterations which

included deployment. Developers embraced Agile practices well, the

head of development was pleased with results, and product

management liked the transparency of reporting. The Human Resource

department was encouraged to align performance appraisals with agile

practice as it is “fun”, a “challenge”, and a “positive change.”

Then impediments begin to appear. Scaling to eight teams is difficult.

Velocity of software delivery is lower than expected. Re- organization

at headquarters leads to loss of support for Agile practice from product

management. The head of development now insists that date and

scope must be met. Command and control with task-based planning is

implemented along with overtime and weekend work. Most agile

development practices are abandoned. EmbeddedWaterFall.com

reverted to type.

There was an extensive analysis of root causes and lessons learned on

this project. The bottom line is failure of management to understand

agile practice and failure of management commitment to implement

Scrum made it impossible to remove impediments at the first sign of

trouble.

Case Study 2: “GameOver.now”
by Henrik Kniberg of Crisp SA, Stockholm

A second case study shows how aggressive action can resolve

management challenges when management is willing to adapt

80

and remove impediments to Scrum implementation. Let’s call this

company GameOver.now where Scrum was implemented for the

most important project in the company to deliver a critical

software application on a fixed date in April of 2007.

A Scrum team ran two-week sprints from April to September in

2006 to produce detailed requirements. Then they ran two-week

sprints to code the requirements from October to December.

January through March of 2007 was reserved for testing.

In January the code is not complete, testing has not begun, and

the management is hovering over the team worried about

progress. They call in an expert Scrum trainer who notices the

team is not really a team. The DBA works independently on her

set of tasks. A three person subgroup in the team mistrusts

everyone else. Management is starting to micromanage an

impending disaster. Waterfall has been implemented under a

Scrum banner.

The Scrum trainer says it is time to implement Scrum. We will

create a product backlog, estimate the product backlog, find the

actual velocity of the team by running two sprints, and determine

the release date by building a roadmap. Created and estimating

stories using Planning Poker for incomplete product backlog

showed that 180 points were remaining. There were 70 points of

testing remaining for the portion of the backlog that had been

coded. The team completed two sprints with a velocity of 10. At

currentcapacity, the project would take 25 two-week sprints and

be delivered a year late.

In order to improve the date, the size of the backlog needs to be

81

reduced and the velocity needs to be increased. However, the

root cause of the current problem is management lack of focus. A

companywide meeting is held and the top priority project is

clearly explained to the entire staff. They are told not to disrupt

the team, to help them whenever they can, and that this project

is really the top priority for the company.

The team systematically removes impediments and triples their

velocity to 30 points per sprint. They deliver an early release to

the customer in the same quarter as the original schedule. The

customer is both surprised and happy. They deliver a final

incremental release during the next quarter. While the project

was several months late, it was six months earlier than the

waterfall Scrum would have delivered it.

The lesson here is that even a failed project can be rescued at

the eleventh hour by Scrum if management and the team will

actually implement Scrum.

82

Appendix 1

Who’s Who in Scrum?

This is a list of people, organisations and teams who have inspired, informed and

instructed Jeff Sutherland and his colleagues. Hence, they have all contributed to the

creation of Scrum in their own special manner.

Hirotaka Takeuchi and Ikujiro Nonaka, the Godfathers of Scrum,

unknowingly gave Scrum its name and helped create a global

transformation of software development. “ The New New Product

Development Game”. Harvard Business Review, (January-February

1986)

Jim Coplien and the ATT Bell Labs Pasteur Project wrote the paper

on the most productive software development team ever documented

the Borland Quattro Pro Project. The first Scrum team implemented

the Scrum daily meeting after reading this paper.

Alan Kay and his team at Xerox Parc invented Smalltalk, the mouse,

the graphical user interface, the personal computer, the Ethernet, and

the laser printer. Listening to his insights on innovation inspired the

first Scrum team to go from “good” to “great”.

Professor Rodney Brooks launched the startup now known as iRobot

in space leased from Jeff Sutherland. He taught the subsumption

architecture, how to create simple rules to produce highly intelligent

performance from complex adaptive systems.

Christopher Langton of Los Alamos Labs and the Sante Fe Institute

coined the term “artificial life” and showing that increasing degrees of

83

freedom up to the edge of chaotic behavior accelerated their evolution.

Scrum feels “chaotic” by intent, so as to accelerate software evolution.

The French object-database developers working near the MIT campus

at Graphael (later Object Databases, then Matisse Software) were the

first to demonstrate in Lisp and then in C++ the Agile patterns of pair

programming, radical refactoring, continuous integration, common

ownership of code, world class user interface design, and other tips

and tricks which Kent Bent used to create eXtreme Programming a

decade later. These were all incorporated into the first Scrum.

The Creative Initiative Foundation worked with Silicon Valley

volunteers to help make the world a better place, the underlying

motivation driving the founders of Scrum. This connected the Co-

Creators of Scrum with the early systems thinking of MIT Professor

Peter Senge who later wrote “The Fifth Discipline.”

Capers Jones and his productivity experts at Software Productivity

Research analyzed and reanalyzed the output of early Scrum teams,

as well as many of the software products built with Scrum during

1994-2000. These analyses allowed the first Scrum team to provide a

money-back guarantee that users would double productivity during the

first month using tools created by the first Scrum.

The first Scrum team – John Scumniotales (Scrum Master), Don

Roedner (Product Owner), Jeff McKenna (Senior Consultant), Joe

Kinsella (object-relational mapping), Laurel Ginder (QA), and three

Danish developers - Grzegorz Ciepiel, Bent Illum, and John

Lindgreen. They endured repeated failure, depressing analysis of

these failures in front of their technical peers from other companies,

and transcendence of their missteps. They were the first Scrum team

84

to achieve the hyperproductive state for which Scrum was designed

and their product, Object Studio, was reported as industry leader by

computer trade journals. Little did they know that Scrum would be

their greatest contribution.

PatientKeeper Inc., the first company to fully implement an “All at

Once” or Type C Scrum involving the entire company in Scrum practice.

This innovation in process design was documented by Mary and Tom

Poppendieck in their book Lean Software Development. “I find that

the vast majority of organizations are still trying to do too much stuff,

and thus find themselves thrashing. The only organization I know of

which has really solved this is Patient Keeper.”

Christopher Alexander coined the phrase “ quality without a name”

(QWAN) – something that many Scrum practitioners experience. The

phrase was used in the book “The Timeless Way of Building”, where

Alexander describes a certain quality that we seek, but which cannot

be named. This may be the most important feature of Scrum and can

only be spoken of as a set of core values - openness, focus,

commitment, courage, and respect. It could be viewed as the “speed

of trust” or one of the sources of “ba” often seen on Scrum teams. Ba

is the Japanese term for the creative flow of innovation described by

Takeuchi and Nonaka.

85

Appendix 2

References
For a complete list of Jeff Sutherland papers, please visit http://scrum.jeffsutherland.com/

C. Jakobsen and J. Sutherland, “Scrum and CMMI – Going from Good
to Great: are you ready-ready to be done-done?,” in Agile 2009,

Chicago, 2009.

K. Schwaber and J. Sutherland. The Scrum Guide. Scrum.org, 2010.

A. Sutherland, J. Sutherland, and C. Hegarty, “Scrum in Church:

Saving the World One Team at a Time,” in Agile 2009, Chicago, 2009.

J. Sutherland, “Future of Scrum: Parallel Pipelining of Sprints in

Complex Projects,” in AGILE 2005 Conference Denver, CO: IEEE, 2005.

J. Sutherland and I. Altman, “Organizational Transformation with

Scrum: How a Venture Capital Group Gets Twice as Much Done with
Half the Work,” in 43rd Hawaii International Conference on Software

Systems, Kauai, Hawaii, 2010.

J. Sutherland, S. Downey, and B. Granvik, “Shock Therapy: A
Bootstrap for a Hyper- Productive Scrum” in Agile 2009, Chicago, 2009.

J. Sutherland, G. Schoonheim, and M. Rijk, “Fully Distributed Scrum:

The Secret Sauce for Hyperproductive Offshored Development Teams,”
in Agile 2008, Toronto, 2008.

J. Sutherland and K. Schwaber, The Scrum Papers: Nuts, Bolts, and

Origins of an Agile Method. Boston: Scrum, Inc., 2007.

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, “Distributed

Scrum: Agile Project Management with Outsourced Development

Teams,” in HICSS'40, Hawaii International Conference on Software

Systems Big Island, Hawaii: IEEE, 2007.

86

Takeuchi and I. Nonaka, “The New New Product Development Game,”

Harvard Business Review, 1986.

