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A note to readers: There are many concise descriptions of Scrum available online, and this 

primer aims to provide the next level of detail on the practices. It is not intended as the final step 

in a Scrum education; teams that are considering adopting Scrum are advised to equip 

themselves with Ken Schwaber’s Agile Project Management with Scrum or Agile Software 

Development with Scrum, and take advantage of the many excellent Scrum training and coaching 

options that are available. Our thanks go to Ken Schwaber, Dr. Jeff Sutherland, and Mike Cohn 

for their generous input. 
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Traditional Software Development 

The traditional way to build software, used by companies big and small, was a sequential 

life cycle commonly known as “the waterfall.” There are many variants (such as the V-

Model), but it typically begins with a detailed planning phase, where the end product is 

carefully thought through, designed, and documented in great detail. The tasks necessary 

to execute the design are determined, and the work is organized using tools such as Gantt 

charts and applications such as Microsoft Project. The team arrives at an estimate of how 

long the development will take by adding up detailed estimates of the individual steps 

involved. Once stakeholders have thoroughly reviewed the plan and provided their 

approvals, the team starts to work. Team members complete their specialized portion of 

the work, and then hand it off to others in production-line fashion. Once the work is 

complete, it is delivered to a testing organization (some call this Quality Assurance), 

which completes testing prior to the product reaching the customer. Throughout the 

process, strict controls are placed on deviations from the plan to ensure that what is 

produced is actually what was designed. 

 

This approach has strengths and weaknesses. Its great strength is that it is supremely 

logical – think before you build, write it all down, follow a plan, and keep everything as 

organized as possible. It has just one great weakness: humans are involved. 

 

For example, this approach requires that the good ideas all come at the beginning of the 

release cycle, where they can be incorporated into the plan. But as we all know, good 

ideas appear throughout the process – in the beginning, the middle, and sometimes even 

the day before launch, and a process that does not permit change will stifle this 

innovation. With the waterfall, a great idea late in the release cycle is not a gift, it’s a 

threat. 

 

The waterfall approach also places a great emphasis on writing things down as a primary 

method for communicating critical information. The very reasonable assumption is that if 

I can write down on paper as much as possible of what’s in my head, it will more reliably 

make it into the head of everyone else on the team; plus, if it’s on paper, there is tangible 

proof that I’ve done my job. The reality, though, is that most of the time these highly 

detailed 50-page requirements documents just do not get read. When they do get read, the 

misunderstandings are often compounded. A written document is an incomplete picture 

of my ideas; when you read it, you create another abstraction, which is now two steps 

away from what I think I meant to say at that time. It is no surprise that serious 

misunderstandings occur. 

 

Something else that happens when you have humans involved is the hands-on “aha” 

moment – the first time that you actually use the working product. You immediately 

think of 20 ways you could have made it better. Unfortunately, these very valuable 

insights often come at the end of the release cycle, when changes are most difficult and 

disruptive – in other words, when doing the right thing is most expensive, at least when 

using a traditional method. 
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Humans are not able to predict the future. For example, your competition makes an 

announcement that was not expected. Unanticipated technical problems crop up that force 

a change in direction. Furthermore, people are particularly bad at planning uncertain 

things far into the future – guessing today how you will be spending your week eight 

months from now is something of a fantasy. It has been the downfall of many a carefully 

constructed Gantt chart. 

In addition, a sequential life cycle tends to foster an adversarial relationship between the 

people that are handing work off from one to the next. “He’s asking me to build 

something that’s not in the specification.” “She’s changing her mind.” “I can’t be held 

responsible for something I don’t control.” And this gets us to another observation about 

sequential development – it is not much fun. The waterfall model is a cause of great 

misery for the people who build products. The resulting products fall well short of 

expressing the creativity, skill, and passion of their creators. People are not robots, and a 

process that requires them to act like robots results in unhappiness. 

A rigid, change-resistant process produces mediocre products. Customers may get what 

they first ask for (at least two translation steps removed), but is it what they really want 

once they see the product? By gathering all the requirements up front and having them set 

in stone, the product is condemned to be only as good as the initial idea, instead of being 

the best once people have learned or discovered new things. 

 

Many practitioners of a sequential life cycle experience these shortcomings again and 

again. But, it seems so supremely logical that the common reaction is to turn inward: “If 

only we did it better, it would work” – if we just planned more, documented more, 

resisted change more, everything would work smoothly. Unfortunately, many teams find 

just the opposite: the harder they try, the worse it gets! There are also management teams 

that have invested their reputation – and many resources – in a waterfall model; changing 

to a fundamentally different model is an apparent admission of having made a mistake. 

And Scrum is fundamentally different... 

Agile Development and Scrum 

The agile family of development methods were born out of a belief that an approach 

more grounded in human reality – and the product development reality of learning, 

innovation, and change – would yield better results. Agile principles emphasize building 

working software that people can get hands on quickly, versus spending a lot of time 

writing specifications up front. Agile development focuses on cross-functional teams 

empowered to make decisions, versus big hierarchies and compartmentalization by 

function. And it focuses on rapid iteration, with continuous customer input along the way. 

Often when people learn about agile development or Scrum, there’s a glimmer of 

recognition – it sounds a lot like back in the start-up days, when we “just did it.”  

 

By far the most popular agile method is Scrum. It was strongly influenced by a 1986 

Harvard Business Review article on the practices associated with successful product 

development groups; in this paper the terms “Rugby”  and “Scrum” were introduced, 

which later morphed into “Scrum” in Wicked Problems, Righteous Solutions (1991, 
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DeGrace and Stahl) relating successful development to the game of Rugby in which a 

self-organizing team moves together down the field of product development. It was then 

formalized in 1995 by Ken Schwaber and Dr. Jeff Sutherland. Scrum is  now  used by 

companies large and small, including Yahoo!, Microsoft, Google, Lockheed Martin, 

Motorola, SAP, Cisco, GE, CapitalOne and the US Federal Reserve. Many teams using 

Scrum report significant improvements, and in some cases complete transformations, in 

both productivity and morale. For product developers – many of whom have been burned 

by the “management fad of the month club” – this is significant. Scrum is simple and 

powerful. 

Scrum Summary 

Scrum is an iterative, incremental framework for projects and product or application 

development. It structures development in cycles of work called Sprints. These iterations 

are no more than one month each, and take place one after the other without pause. The 

Sprints are timeboxed – they end on a specific date whether the work has been completed 

or not, and are never extended. At the beginning of each Sprint, a cross-functional team 

selects items (customer requirements) from a prioritized list. The team commits to 

complete the items by the end of the Sprint.  During the Sprint, the chosen items do not 

change. Every day the team gathers briefly to inspect its progress, and adjust the next 

steps needed to complete the work remaining. At the end of the Sprint, the team reviews 

the Sprint with stakeholders, and demonstrates what it has built. People obtain feedback 

that can be incorporated in the next Sprint. Scrum emphasizes working product at the end 

of the Sprint that is really “done”; in the case of software, this means code that is 

integrated, fully tested and potentially shippable. Key roles, artifacts, and events are 

summarized in Figure 1. 

 

A major theme in Scrum is “inspect and adapt.” Since development inevitably involves 

learning, innovation, and surprises, Scrum emphasizes taking a short step of 

development, inspecting both the resulting product and the efficacy of current practices, 

and then adapting the product goals and process practices. Repeat forever. 
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Figure 1. Scrum 

Scrum Roles 

In Scrum, there are three roles: The Product Owner, The Team, and The Scrum Master.  
Together these are known as The Scrum Team.  The Product Owner is responsible for 

maximizing return on investment (ROI) by identifying product features, translating these 

into a prioritized list, deciding which should be at the top of the list for the next Sprint, 

and continually re-prioritizing and refining the list. The Product Owner has profit and 

loss responsibility for the product, assuming it is a commercial product. In the case of an 

internal application, the Product Owner is not responsible for ROI in the sense of a 

commercial product (that will generate revenue), but they are still responsible for 

maximizing ROI in the sense of choosing – each Sprint – the highest-business-value 

lowest-cost items. In practice, ‘value’ is a fuzzy term and prioritization may be 

influenced by the desire to satisfy key customers, alignment with strategic objectives, 

attacking risks, improving, and other factors.  In some cases, the Product Owner and the 

customer are the same person; this is common for internal applications. In others, the 

customer might be millions of people with a variety of needs, in which case the Product 

Owner role is similar to the Product Manager or Product Marketing Manager position in 

many product organizations. However, the Product Owner is somewhat different than a 

traditional Product Manager because they actively and frequently interact with the Team, 

personally offering the priorities and reviewing the results each two- or four-week 

iteration, rather than delegating development decisions to a project manager. It is 

important to note that in Scrum there is one and only one person who serves as – and has 
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the final authority of – Product Owner, and he or she is responsible for the value of the 

work. 

The Team builds the product that the Product Owner indicates: the application or 

website, for example. The Team in Scrum is “cross-functional” – it includes all the 

expertise necessary to deliver the potentially shippable product each Sprint – and it is 

“self-organizing” (self-managing), with a very high degree of autonomy and 

accountability. The Team decides what to commit to, and how best to accomplish that 

commitment; in Scrum lore, the Team is known as “Pigs” and everyone else in the 

organization are “Chickens” (which comes from a joke about a pig and a chicken 

deciding to open a restaurant called “Ham and Eggs,” and the pig having second thoughts 

because “he would be truly committed, but the chicken would only be involved”). 

The Team in Scrum is seven plus or minus two people, and for a software product the 

Team might include people with skills in analysis, development, testing, interface design, 

database design, architecture, documentation, and so on. The Team develops the product 

and provides ideas to the Product Owner about how to make the product great. In Scrum 

the Teams are most productive and effective if all members are 100 percent dedicated to 

the work for one product during the Sprint; avoid multitasking across multiple products 

or projects. Stable teams are associated with higher productivity, so avoid changing Team 

members. Application groups with many people are organized into multiple Scrum 

Teams, each focused on different features for the product, with close coordination of their 

efforts. Since one team often does all the work (planning, analysis, programming, and 

testing) for a complete customer-centric feature, Teams are also known as feature teams. 

The Scrum Master helps the product group learn and apply Scrum to achieve business 

value.  The Scrum Master does whatever is in their power to help the Team and Product 

Owner be successful. The Scrum Master is not the manager of the Team or a project 

manager; instead, the Scrum Master serves the Team, protects them from outside 

interference, and educates and guides the Product Owner and the Team in the skillful use 

of Scrum. The Scrum Master makes sure everyone (including the Product Owner, and 

those in management) understands and follows the practices of Scrum, and they help lead 

the organization through the often difficult change required to achieve success with agile 

development.  Since Scrum makes visible many impediments and threats to the Team’s 

and Product Owner’s effectiveness, it is important to have an engaged Scrum Master 
working energetically to help resolve those issues, or the Team or Product Owner will 

find it difficult to succeed.  There should be a dedicated full-time Scrum Master, although 

a smaller Team might have a team member play this role (carrying a lighter load of 

regular work when they do so). Great ScrumMasters can come from any background or 

discipline: Engineering, Design, Testing, Product Management, Project Management, or 

Quality Management.  

The Scrum Master and the Product Owner cannot be the same individual; at times, the 

Scrum Master may be called upon to push back on the Product Owner (for example, if 

they try to introduce new deliverables in the middle of a Sprint). And unlike a project 

manager, the Scrum Master does not tell people what to do or assign tasks – they 

facilitate 
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the process, supporting the Team as it organizes and manages itself. If the Scrum 
Master was previously in a position managing the Team, they will need to significantly 

change their mindset and style of interaction for the Team to be successful with Scrum. 

Note there is no role of project manager in Scrum.  This is because none is needed; the 

traditional responsibilities of a project manager have been divided up and reassigned 

among the three Scrum roles.  Sometimes an (ex-)project manager can step into the role 

of Scrum Master, but this has a mixed record of success – there is a fundamental 

difference between the two roles, both in day-to-day responsibilities and in the mindset 

required to be successful.  A good way to understand thoroughly the role of the Scrum 
Master, and start to develop the core skills needed for success, is the Scrum Master 
training. 

In addition to these three roles, there are other contributors to the success of the product, 

including functional managers (for example, an engineering manager). While their role 

changes in Scrum, they remain valuable. For example:  

• they support the Team by respecting the rules and spirit of Scrum

• they help remove impediments that the Team and Product Owner identify

• they make their expertise and experience available

In Scrum, these individuals replace the time they previously spent playing the role of 

“nanny” (assigning tasks, getting status reports, and other forms of micromanagement) 

with time as “guru” and “servant” of the Team (mentoring, coaching, helping remove 

obstacles, helping problem-solve, providing creative input, and guiding the skills 

development of Team members). In this shift, managers may need to change their 

management style; for example, using Socratic questioning to help the Team discover the 

solution to a problem, rather than simply deciding a solution and assigning it to the Team. 

Starting Scrum 

The first step in Scrum is for the Product Owner to articulate the product vision. 

Eventually, this evolves into a refined and prioritized list of features called the Product 

Backlog. This backlog exists (and evolves) over the lifetime of the product; it is the 

product road map (Figure 2). At any point, the Product Backlog is the single, definitive 

view of “everything that could be done by the Team ever, in order of priority”. Only a 

single Product Backlog exists; this means the Product Owner is required to make 

prioritization decisions across the entire spectrum, representing the interest of 

stakeholders and influenced by the team. 
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Figure 2. The Product Backlog 

The Product Backlog includes a variety of items, primarily new customer features 

(“enable all users to place book in shopping cart”), but also engineering improvement 

goals (“rework the transaction processing module to make it scalable”), exploratory or 

research work (“investigate solutions for speeding up credit card validation”), and, 

possibly, known defects (“diagnose and fix the order processing script errors”), if there 

are only a few problems. (A system with many defects usually has a separate defect 

tracking system.) The Product Backlog can be articulated in any way that is clear and 

sustainable, though either Use Cases or “user stories” are often used to describe the 
Product Backlog items in terms of their value to the end user of the product. 

The subset of the Product Backlog that is intended for the current release is known as the 

Release Backlog, and in general, this portion is the primary focus of the Product Owner. 

The Product Backlog is continuously updated by the Product Owner to reflect changes in 

the needs of the customer, new ideas or insights, moves by the competition, technical 

hurdles that appear, and so forth. The Team provides the Product Owner with estimates 

of the effort required for each item on the Product Backlog. In addition, the Product 

Owner is responsible for assigning a business value estimate to each individual item. This 

is usually an unfamiliar practice for a Product Owner. As such, it is something a Scrum 
Master may help the Product Owner learn to do. With these two estimates (effort and 

value) and perhaps with additional risk estimates, the Product Owner prioritizes the 

backlog (actually, usually just the Release Backlog subset) to maximize ROI (choosing 

items of high value with low effort) or secondarily, to reduce some major risk. As will be 

seen, these effort and value estimates may be refreshed each Sprint as people learn; 

consequently, this is a continuous re-prioritization activity as the Product Backlog is 
ever-evolving.  

Scrum does not define techniques for expressing or prioritizing items in the Product 

Backlog and it does not define an estimation technique.  A common technique is to 

estimate in terms of relative size (factoring in effort, complexity, and uncertainty) using a 

unit of “story points” or simply “points”. 
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Over time, a Team tracks how much work it can do each Sprint; for example, averaging 

26 points per Sprint. With this information they can project a release date to complete all 

features, or how many features can be completed by a fixed date, if the average continues 

and nothing changes.  This average is called the “velocity” of the team.  Velocity is 

expressed in the same units as the Product Backlog item size estimates. 

The items in the Product Backlog can vary significantly in size or effort. Larger ones are 

broken into smaller items during the Product Backlog Refinement workshop or the Sprint 

Planning Meeting, and smaller ones may be consolidated. The Product Backlog items for 

the upcoming next several Sprints should be small and fine-grained enough that they are 

understood by the Team, enabling commitments made in the Sprint Planning meeting to 

be meaningful; this is called an “actionable” size. 

One of the myths about Scrum is that it prevents you from writing detailed specifications; 

in reality, it is up to the Product Owner and Team to decide how much detail is required, 

and this will vary from one backlog item to the next, depending on the insight of the 

Team, and other factors. State what is important in the least amount of space necessary – 

in other words, do not describe every possible detail of an item, just make clear what is 

necessary for it to be understood. Low priority items, far from being implemented and 

usually “coarse grained” or large, have less requirements details. High priority and fine-

grained items that will soon be implemented tend to have more detail. 

Sprint Planning 

At the beginning of each Sprint, the Sprint Planning Meeting takes place. It is divided 

into two distinct sub-meetings, the first of which is called Sprint Planning Part One. 

In Sprint Planning Part One, the Product Owner and Team (with facilitation from the 

Scrum Master) review the high-priority items in the Product Backlog that the Product 

Owner is interested in implementing this Sprint. They discuss the goals and context for 

these high-priority items on the Product Backlog, providing the Team with insight into 

the Product Owner’s thinking. The Product Owner and Team also review the “Definition 

of Done” (which was established earlier) that all items must meet, such as, “Done means 

coded to standards, reviewed, implemented with unit test-driven development (TDD), 

tested with 100 percent test automation, integrated, and documented.” Part One focuses 

on understanding what the Product Owner wants. According to the rules of Scrum, at the 

end of Part One the (always busy) Product Owner may leave although they must be 

available (for example, by phone) during the next meeting. However, they are welcome 

to attend Part Two... 

Sprint Planning Part Two focuses on detailed task planning for how to implement the 

items that the Team decides to take on. The Team selects the items from the Product 

Backlog they commit to complete by the end of the Sprint, starting at the top of the 

Product Backlog (in others words, starting with the items that are the highest priority for 

the Product Owner) and working down the list in order. This is a key practice in Scrum: 
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The Team decides how much work it will commit to complete, rather than having it 

assigned to them by the Product Owner. This makes for a more reliable commitment 

because the Team is making it based on its own analysis and planning, rather than having 

it decided by someone else. While the Product Owner does not have control over how 

much the Team commits to, he or she knows that the items the Team is committing to are 

drawn from the top of the Product Backlog – in other words, the items that he or she has 

rated as most important. The Team has the ability to lobby for items from further down 

the list; this usually happens when the Team and Product Owner realize that something of 

lower priority fits easily and appropriately with the high priority items. 

 

The Sprint Planning Meeting will often last a number of hours, but no more than eight 

hours for a four-week Sprint – the Team is making a serious commitment to complete the 

work, and this commitment requires careful thought to be successful. The Team will 

probably begin the Sprint Planning Part Two by estimating how much time each member 

has for Sprint-related work – in other words, their average workday minus the time they 

spend attending meetings, doing email, taking lunch breaks, and so on. For most people 

this works out to 4-6 hours of time per day available for Sprint-related work. This is the 

team’s capacity for the upcoming Sprint. See Figure 3. 

 

Figure 3. Estimating Available Hours 

 

Once the capacity is determined, the Team figures out how many Product Backlog items 

they can complete in that time, and how they will go about completing them.  This often 

starts with a design discussion at a whiteboard.  Once the overall design is understood, 

the Team decomposes the Product Backlog items into work.  The Team starts with the 

first item on the Product Backlog – in other words, the Product Owner’s highest priority 

item – and working together, breaks it down into individual tasks, which are recorded in a 

document called the Sprint Backlog (Figure 4).  

 

As mentioned, the Product Owner must be available during Part Two (such as via the 

phone) so that clarification is possible. The Team will move sequentially down the 

Product Backlog in this way, until it’s used up all its estimated capacity. At the end of the 

meeting, the Team will have produced a list of all the tasks with estimates (typically in 

hours or fractions of a day).  

 

Sprint Length 2 weeks

Workdays during Sprint 8 days

Tracy 8 4 32

Sanjay 7 5 35

Phillip 8 4 32

Jing 6 5 30

* Net of vacation and other days out of office

Team 
Member

Available 
Days During 

Sprint*

Available 
Hours per 

Day

Total 
Available 

Hours
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Scrum encourages multi-skilled workers, rather than only “working to job title” such as a 

“tester” only doing testing. In other words, Team members “go to where the work is” and 

help out as possible. If there are many testing tasks, then all Team members may help. 

This does not imply that everyone is a generalist; no doubt some people are especially 

skilled in testing (and so on) but Team members work together and learn new skills from 

each other. Consequently, during task generation and estimation in Sprint Planning, it is 

not necessary – nor appropriate – for people to volunteer for all the tasks “they can do 

best.” Rather, it is better to only volunteer for one task at a time, when it is time to pick 

up a new task, and to consider choosing tasks that will on purpose involve learning 

(perhaps by pair work with a specialist).  

 

All that said, there are rare times when John may do a particular task because it would 

take far too long or be impossible for others to learn – perhaps John is the only person 

with any artistic skill to draw pictures. Other Team members could not draw a “stick 

man” if their life depended on it. In this rare case – and if it is not rare and not getting 

rarer as the Team learns, there is something wrong – it may be necessary to ask if the 

total planned drawing tasks that must be done by John are feasible within the short Sprint. 

 

Many Teams also make use of a visual task-tracking tool, in the form of a wall-sized task 

board where tasks (written on Post-It Notes) migrate during the Sprint across columns 

labeled “Not Yet Started,” “In Progress,” and “Completed.” See Figure 5. 

Figure 4. Sprint Backlog 

  

New Estimates of Effort

Remaining as of Day...

Product Backlog Item Sprint Task Volunteer 1 2 3 4 5 6

modify database 5

create webpage (UI) 8

create webpage (Javascript logic) 13

write automated acceptance tests 13

update buyer help webpage 3

. . .

merge DCP code and complete layer-level tests 5

complete machine order for pRank
8

change DCP and reader to use pRank http API 13

Initial 
Estimate of 

Effort

As a buyer, I want to place 
a book in a shopping cart

Improve transaction 
processing performance
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Figure 5. Visual Management - Sprint Backlog tasks on the wall 

One of the pillars of Scrum is that once the Team makes its commitment, any additions or 

changes must be deferred until the next Sprint. This means that if halfway through the 

Sprint the Product Owner decides there is a new item he or she would like the Team to 

work on, he cannot make the change until the start of the next Sprint. If an external 

circumstance appears that significantly changes priorities, and means the Team would be 

wasting its time if it continued working, the Product Owner or the Team can terminate 

the Sprint. The Team stops, and a new Sprint Planning meeting initiates a new Sprint. 

The disruption of doing this is usually great; this serves as a disincentive for the Product 

Owner or Team to resort to this dramatic decision. 

There is a powerful, positive influence that comes from the Team being protected from 

changing goals during the Sprint. First, the Team gets to work knowing with absolute 

certainty that its commitments will not change, that reinforces the Team’s focus on 

ensuring completion. Second, it disciplines the Product Owner into really thinking 

through the items he or she prioritizes on the Product Backlog and offers to the Team for 

the Sprint.   

By following these Scrum rules the Product Owner gains two things. First, he or she has 

the confidence of knowing the Team has made a commitment to complete a realistic and 

clear set of work it has chosen. Over time a Team can become quite skilled at choosing 

and delivering on a realistic commitment. Second, the Product Owner gets to make 

whatever changes he or she likes to the Product Backlog before the start of the next 

Sprint. At that point, additions, deletions, modifications, and re-prioritizations are all 

possible and acceptable. While the Product Owner is not able to make changes to the 

selected items under development during the current Sprint, he or she is only one Sprint’s 

duration or less away from making any changes they wish. Gone is the stigma around 

change – change of direction, change of requirements, or just plain changing your mind – 

and it may be for this reason that Product Owners are usually as enthusiastic about Scrum 

as anyone. 

Daily Scrum 

Once the Sprint has started, the Team engages in another of the key Scrum practices: The 

Daily Scrum. This is a short (15 minutes or less) meeting that happens every workday at 
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an appointed time. Everyone on the Team attends. To keep it brief, it is recommended 

that everyone remain standing. It is the Team’s opportunity to synchronize their work and 

report to each other on obstacles. In the Daily Scrum, one by one, each member of the 

Team reports three (and only three) things to the other members of the Team: (1) What 

they were able to get done since the last meeting; (2) what they are planning to finish by 

the next meeting; and (3) any blocks or impediments that are in their way.  

Note that the Daily Scrum is not a status meeting to report to a manager; it is a time for a 

self-organizing Team to share with each other what is going on, to help them coordinate. 

Someone makes note of the blocks, and the Scrum Master is responsible to help Team 

members resolve them. There is no discussion during the Daily Scrum, only reporting 

answers to the three questions; if discussion is required it takes place immediately after 

the Daily Scrum in a follow-up meeting, although in Scrum no one is required to attend 

this. This follow-up meeting is a common event where the Team adapts to the 

information they heard in the Daily Scrum: in other words, another inspect and adapt 

cycle. It is generally recommended not to have managers or others in positions of 

perceived authority attend the Daily Scrum.  This risks making the Team feel 

“monitored” – under pressure to report major progress every day (an unrealistic 

expectation), and inhibited about reporting problems – and it tends to undermine the 

Team’s self-management, and invite micromanagement.  It would be more useful for a 

stakeholder to instead reach out to the Team following the meeting, and offer to help with 

any blocks that are slowing the Team’s progress. 

Updating Sprint Backlog & Sprint Burndown Chart 

The Team in Scrum is self-managing, and in order to do this successfully, it must know 

how it is doing.  Every day, the Team members update their estimate of the amount of 

time remaining to complete their current task in the Sprint Backlog (Figure 6). 

Following this update, someone adds up the hours remaining for the Team as a whole, 

and plots it on the Sprint Burndown Chart (Figure 7). This graph shows, each day, a 

new estimate of how much work (measured in person hours) remains until the Team’s 

tasks are finished. Ideally, this is a downward sloping graph that is on a trajectory to 

reach “zero effort remaining” by the last day of the Sprint. Hence it is called a burndown 

chart. And while sometimes it looks good, often it does not; this is the reality of product 

development. The important thing is that it shows the Team their progress towards their 

goal, not in terms of how much time was spent in the past (an irrelevant fact in terms of 

progress), but in terms of how much work remains in the future – what separates the 

Team from their goal. If the burndown line is not tracking downwards towards 

completion near the end of the Sprint, then the Team needs to adjust, such as to reduce 

the scope of the work or to find a way to work more efficiently while still maintaining a 

sustainable pace.  

While the Sprint Burndown chart can be created and displayed using a spreadsheet, many 

Teams find it is more effective to show it on paper on a wall in their workspace, with 

updates in pen; this “low-tech/high-touch” solution is fast, simple, and often more visible 

than a computer chart. 
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Figure 6. Daily Updates of Work Remaining on the Sprint Backlog 

 

Figure 7. Sprint Burndown Chart  

Product Backlog Refinement 

One of the lesser known, but valuable, guidelines in Scrum is that five or ten percent of 

each Sprint must be dedicated by the Team to refining (or “grooming”) the Product 

Backlog. This includes detailed requirements analysis, splitting large items into smaller 

ones, estimation of new items, and re-estimation of existing items. Scrum is silent on how 

this work is done, but a frequently used technique is a focused workshop near the end of 

the Sprint, so that the Team and Product Owner can dedicate themselves to this work 

without interruption.  

 

For a two-week Sprint, five percent of the duration implies that each Sprint there is a 

half-day Product Backlog Refinement workshop. This refinement activity is not for items 

selected for the current Sprint; it is for items for the future, most likely in the next one or 

two Sprints. With this practice, Sprint Planning becomes relatively simple because the 

Product Owner and Scrum Team start the planning with a clear, well-analyzed and 
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carefully estimated set of items. A sign that this refinement workshop is not being done 

(or not being done well) is that Sprint Planning involves significant questions, discovery, 

or confusion and feels incomplete; planning work then often spills over into the Sprint 

itself, which is typically not desirable. 

Ending the Sprint 

One of the core tenets of Scrum is that the duration of the Sprint is never extended – it 

ends on the assigned date regardless of whether the Team has completed the work it 

committed to. A Team typically over-commits in its first few Sprints and fails to 

accomplish its commitments. Sometimes it then overcompensates and under-commits, 

and finishes early (in which case it can ask the Product Owner for more Product Backlog 

items to work on). But by the third or fourth Sprint a Team has typically figured out what 

it is capable of delivering (most of the time), and they will meet their Sprint goals more 

reliably after that. Teams are encouraged to pick one duration for their Sprints (say, two 

weeks) and not change it. This helps the Team learn how much it can accomplish, which 

helps in both estimation and longer-term release planning. It also helps the Team achieve 

a rhythm for their work; this is often referred to as the “heartbeat” of the Team in Scrum. 

Sprint Review 

After the Sprint ends, there is the Sprint Review, where the Team and the Product 

Owner review the Sprint. This is often mislabeled the “demo” but that does not capture 

the real intent of this meeting. A key idea in Scrum is inspect and adapt. To see and learn 

what is going on and then evolve based on feedback, in repeating cycles. The Sprint 

Review is an inspect and adapt activity for the product. It is a time for the Product Owner 

to learn what is going on with the product and with the Team (that is, a review of the 

Sprint); and for the Team to learn what is going on with the Product Owner and the 

market. Consequently, the most important element of the Review is an in-depth 

conversation between the Team and Product Owner to learn the situation, to get advice, 

and so forth. The review includes a demo of what the Team built during the Sprint, but if 

the focus of the review is a demo rather than conversation, there is an imbalance.  

A useful – but often overlooked – Scrum guideline is that it the ScrumMaster’s 

responsibility to ensure that everyone knows the “Definition of Done” defined for this 

product or release. He prevents the team from demonstrating or discussing Product 

Backlog Items that are not ‘done’ according to the “Definition of Done.” Items that are 

not ‘done’ go back to the Product Backlog and will be re-prioritized by the Product 

Owner. In way, there is transparency regarding the quality of the work; Teams cannot 

fake the quality by presenting software that appears to work well, but may be 

implemented with a messy pile of poor quality and untested code. 

Present at this meeting are the Product Owner, Team members, and Scrum Master, plus 

customers, stakeholders, experts, executives, and anyone else interested. The demo 

portion of the Sprint Review is not a “presentation” the Team gives – there is no 

slideware. A guideline in Scrum is that no more than 30 minutes should be spent 
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preparing for the review, otherwise it suggests something is wrong with the work of the 

Team.  It is simply a demo of what has been built. Anyone present is free to ask questions 

and give input.  

Sprint Retrospective 

The Sprint Review involves inspect and adapt regarding the product. The Sprint 

Retrospective, which follows the Review, involves inspect and adapt regarding the 

process.  This is a practice that some Teams skip, and that’s unfortunate, because it’s the 

main mechanism for taking the visibility that Scrum provides into areas of potential 

improvement, and turning it into results. It’s an opportunity for the Team to discuss 

what’s working and what’s not working, and agree on changes to try. The Team and 

Scrum Master will attend, and the Product Owner is welcome but not required to attend. 

Sometimes the Scrum Master can act as an effective facilitator for the retrospective, but it 

may be better to find a neutral outsider to facilitate the meeting; a good approach is for 

ScrumMasters to facilitate each others’ retrospectives, which enables cross-pollination 

among Teams. 

There are many techniques for conducting a Sprint Retrospective, and the book Agile 

Retrospectives (Derby, Larsen 2006) provides a useful catalogue of techniques.  A simple 

way to structure the discussion is to draw two columns on a whiteboard, labeled “What’s 

Working Well” and “What Could Work Better” – and then go around the room, with each 

person adding one or more items to either list. As items are repeated, check marks are 

added next to them, so the common items become clear. Then the Team looks for 

underlying causes, and agrees on a small number of changes to try in the upcoming 

Sprint, along with a commitment to review the results at the next Sprint Retrospective. 

A useful practice at the end of the Retrospective is for the Team to label each of the items 

in each column with either a “C” if it is caused by Scrum (in other words, without Scrum 

it would not be happening), or an “E” if it is exposed by Scrum (in other words, it would 

be happening with or without Scrum, but Scrum makes it known to the Team), or a “U” if 

it’s unrelated to Scrum (like the weather). The Team may find a lot of C’s on the “What’s 

Working Well” side of the board, and a lot of E’s on the “What Could Work Better ”; this 

is good news, even if the “What Could Work Better” list is a long one, because the first 

step to solving underlying issues is making them visible, and Scrum is a powerful catalyst 

for that. 

Updating Release Backlog & Burndown Chart 

At this point, some items have been finished, some have been added, some have new 

estimates, and some have been dropped from the release goal. The Product Owner is 

responsible for ensuring that these changes are reflecting in the Release Backlog (and 

more broadly, the Product Backlog). In addition, Scrum includes a Release Burndown 

chart that shows progress towards the release date. It is analogous to the Sprint Burndown 

chart, but is at the higher level of items (requirements) rather than fine-grained tasks. 

Since a new Product Owner is unlikely to know why or how to create this chart, this is 
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another opportunity for a Scrum Master to help the Product Owner. See Figure 8 

and Figure 9 for an example of the Release Backlog and Release Burndown chart. 

Figure 8. Release Backlog (a subset of the Product Backlog) 

Figure 9. Release Burndown Chart 

Starting the Next Sprint 

Following the Sprint Review, the Product Owner may update the Product Backlog with 

any new insight. At this point, the Product Owner and Team are ready to begin another 

Sprint cycle. There is no down time between Sprints – Teams normally go from a Sprint 

Retrospective one afternoon into the next Sprint Planning the following morning (or after 

the weekend).  

New Estimates of Effort

Remaining at end of Sprint...

Item Priority 1 2 3 4 5 6

... 1 7 5 0 0 0

As a buyer, I want to remove a book in a shopping cart ... 2 6 2 0 0 0

... 3 6 13 13 0 0

... 4 6 20 20 20 0

Upgrade all servers to Apache 2.2.3 ... 5 5 13 13 13 13

... 6 2 3 3 3 3

As a shopper, I want to create and save a wish list ... 7 7 40 40 40 40

... 8 4 20 20 20 20

. . . . . . . . .

Total 537 580 570 500

Details 
(wiki 
URL)

Estimate 
of Value

Initial 
Estimate 
of Effort

As a buyer, I want to place a book in a shopping cart 
(see UI sketches on wiki page)

Improve transaction processing performance (see target 
performance metrics on wiki)

Investigate solutions for speeding up credit card 
validation (see target performance metrics on wiki)

Diagnose and fix the order processing script errors 
(bugzilla ID 14823)

As a shopper, I want to to add or delete items on my 
wish list
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One of the principles of agile development is “sustainable pace”, and only by working 

regular hours at a reasonable level can Teams continue this cycle indefinitely.  

Release Sprint 

The perfection vision of Scrum is that the product is potentially shippable at the end of 

each Sprint, which implies there is no wrap up work required, such as testing or 

documentation. The implication is that everything is completely finished every Sprint; 

that you could actually ship it or deploy it immediately after the Sprint Review. This 

means that each increment is a complete slice of the final product and gives complete 

transparency to the Product Owner and stakeholders. They  know exactly where they are 

at the end of every Sprint. 

However, many organizations have weak development practices, tools and infrastructure 

and cannot achieve this perfection vision, or there are other extenuating circumstances 

(such as, “the machine broke”). In this case, there will be some remaining work, such as 

final production environment integration testing, and so there will be the need for a 

“Release Sprint” to handle this remaining work.  

 

Note that the need for a Release Sprint is a sign of some weakness; the ideal is that it is 

not required. When necessary, Sprints continue until the Product Owner decides the 

product is almost ready for release, at which point there will be a Release Sprint to 

prepare for launch. If the Team has followed good development practices, with 

continuous refactoring and integration, and effective testing during each Sprint, there 

should be little pre-release stabilization or other wrap-up work required. 

Release Planning & Initial Product Backlog Refinement 

A question that is sometimes asked is how, in an iterative model, can long-term release 

planning be done. There are two cases to consider: (1) a new product in its first release, 

and (2) an existing product in a later release. 

 

In the case of a new product, or an existing product just adopting Scrum, there is the need 

to do initial Product Backlog refinement before the first Sprint, where the Product Owner 

and Team shape a proper Scrum Product Backlog. This could take a few days or a week, 

and involves a vision workshop, some detailed requirements analysis, and estimation of 

all the items identified for the first release. 

 

Surprisingly in Scrum, in the case of an established product with an established Product 

Backlog, there should not be the need for any special or extensive release planning for the 

next release. Why? Because the Product Owner and Team should be doing Product 

Backlog refinement every Sprint (five or ten percent of each Sprint), continuously 

preparing for the future. This continuous product development mode obviates the need 

for the dramatic punctuated prepare-execute-conclude stages one sees in traditional 

sequential life cycle development. 
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During an initial Product Backlog refinement workshop and during the continuous 

backlog refinement each Sprint, the Team and Product Owner will do release planning, 

refining the estimates, priorities, and content as they learn.  

 

Some releases are date-driven; for example: “We will release version 2.0 of our project at 

a trade-show on November 10.” In this situation, the Team will complete as many Sprints 

(and build as many features) as is possible in the time available. Other products require 

certain features to be built before they can be called complete and the product will not 

launch until these requirements are satisfied, however long that takes. Since Scrum 

emphasizes producing potentially shippable code each Sprint, the Product Owner may 

choose to start doing interim releases, to allow the customer to reap the benefits of 

completed work sooner. 

 

Since they cannot possibly know everything up front, the focus is on creating and 

refining a plan to give the release broad direction, and clarify how tradeoff decisions will 

be made (scope versus schedule, for example). Think of this as the roadmap guiding you 

towards your final destination; which exact roads you take and the decisions you make 

during the journey may be determined en route. 

 

Most Product Owners choose one release approach. For example, they will decide a 

release date, and will work with the Team to estimate the Release Backlog items that can 

be completed by that date. In situations where a “fixed price / fixed date / fixed 

deliverable” commitment is required – for example, contract development – one or more 

of those parameters must have a built-in buffer to allow for uncertainty and change; in 

this respect, Scrum is no different from other approaches. 

Application or Product Focus 

For applications or products – either for the market or for internal use within an 

organization – Scrum moves groups away from the older project-centric model toward a 

continuous application/product development model. There is no longer a project with a 

beginning, middle, and end. And hence no traditional project manager. Rather, there is 

simply a stable Product Owner and a long-lived self-managing Team that collaborate in 

an “endless” series of fixed-length Sprints, until the product or application is retired. All 

necessary “project” management work is handled by the Team and the Product Owner – 

who is an internal business customer or from Product Management. It is not managed by 

an IT manager or someone from a Project Management Office.  

 

Scrum can also be used for true projects that are one-time initiatives (rather than work to 

create or evolve long-lived applications); still, in this case the Team and Product Owner 

do the project management.  

 

What if there is insufficient new work from one or more existing applications to warrant 

a dedicated long-lived Team for each application? In this case, a stable long-lived Team 

may take on items from one application in one Sprint, and then items from another in the 

next Sprint; in this situation the Sprints are often quite short, such as one week.  
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Occasionally, there is insufficient new work even for the prior solution, and the Team 

may take on items from several applications during the same Sprint; however, beware 

this solution as it may devolve into unproductive multitasking across multiple 

applications. A basic productivity theme in Scrum is for the Team to be focused on one 

product or application for one Sprint. 

Common Challenges 

Scrum is not only a concrete set of practices – rather, and more importantly, it is a 

framework that provides transparency, and a mechanism that allows “inspect and adapt”.  

Scrum works by making visible the dysfunction and impediments that are impacting the 

Product Owner and the Team’s effectiveness, so that they can be addressed.  For 

example, the Product Owner may not really know the market, the features, or how to 

estimate their relative business value. Or the Team may be unskillful in effort estimation 

or development work. 

The Scrum framework will quickly reveal these weaknesses. Scrum does not solve the 

problems of development; it makes them painfully visible, and provides a framework for 

people to explore ways to resolve problems in short cycles and with small improvement 

experiments. 

Suppose the Team fails to deliver what they committed to in the first Sprint due to poor 

task analysis and estimation skill. To the Team, this feels like failure. But in reality, this 

experience is the necessary first step toward becoming more realistic and thoughtful 

about its commitments.  This pattern – of Scrum helping make visible dysfunction, 

enabling the Team to do something about it – is the basic mechanism that produces the 

most significant benefits that Teams using Scrum experience. 

One common mistake made, when presented with a Scrum practice that is challenging, is 

to change Scrum. For example, Teams that have trouble delivering on their Sprint 

commitment might decide to make the Sprint duration extendable, so it never runs out of 

time – and in the process, ensure it never has to learn how to do a better job of estimating 

and managing its time. In this way, without coaching and the support of an experienced 

Scrum Master, organizations can mutate Scrum into just a mirror image of its own 

weaknesses and dysfunction, and undermine the real benefit that Scrum offers: Making 

visible the good and the bad, and giving the organization the choice of elevating itself to 

a higher level. 

Another common mistake is to assume that a practice is discouraged or prohibited just 

because Scrum does not specifically require it. For example, Scrum does not require the 

Product Owner to set a long-term strategy for his or her product; nor does it require 

engineers to seek advice from more experienced engineers about complex technical 

problems. Scrum leaves it to the individuals involved to make the right decision; and in 

most cases, both of these practices (along with many others) are well advised. 
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Something else to be wary of is managers imposing Scrum on their Teams; Scrum is 

about giving a Team space and tools to manage itself, and having this dictated from 

above is not a recipe for success. A better approach might begin with a Team learning 

about Scrum from a peer or manager, getting comprehensively educated in professional 

training, and then making a decision as a Team to follow the practices faithfully for a 

defined period; at the end of that period, the Team will evaluate its experience, and 

decide whether to continue. 

The good news is that while the first Sprint is usually very challenging to the Team, the 

benefits of Scrum tend to be visible by the end of it, leading many new Scrum Teams to 

exclaim: “Scrum is hard, but it sure is a whole lot better than what we were doing 

before!” 

Appendix: Terminology 

Burn Down  

The trend of work remaining across time in a Sprint, a Release, or a Product. The source 

of the raw data is the Sprint Backlog and the Product Backlog, with work remaining 

tracked on the vertical axis and the time periods (days of a Sprint, or Sprints) tracked on 

the horizontal axis. 

Chicken 

Someone who is interested in the project but does not have formal Scrum responsibilities 

and accountabilities (Team, Product Owner, Scrum Master). 

Daily Scrum 

A short meeting held daily by each Team during which the Team members inspect their 

work, synchronize their work and progress and report and impediments to the Scrum 
Master for removal. Follow-on meetings to adapt upcoming work to optimize the Sprint 

may occur after the Daily Scrum meetings. 

Done 

Complete as mutually agreed to by all parties and that conforms to an organization’s 

standards, conventions, and guidelines. When something is reported as “done” at the 

Sprint Review meeting, it must conform to this agreed definition. 

Estimated Work Remaining (Sprint Backlog items) 

The number of hours that a Team member estimates remain to be worked on any task. 

This estimate is updated at the end of every day when the Sprint Backlog task is worked 

on. The estimate is the total estimated hours remaining, regardless of the number of 

people that perform the work. 

Increment 

Product functionality that is developed by the Team during each Sprint that is potentially 

shippable or of use to the Product Owner’s stakeholders. 
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Increment of Potentially Shippable Product Functionality 

A complete slice of the overall product or system that could be used by the Product 

Owner or stakeholders if they chose to implement it. 

Sprint 

An iteration, or one repeating cycle of similar work, that produces increment of product 

or system. No longer than one month and usually more than one week. The duration is 

fixed throughout the overall work and all teams working on the same system or product 

use the same length cycle. 

Pig 

Someone exercising one of the three Scrum roles (Team, Product Owner, Scrum Master) 
who has made a commitment and has the authority to fulfill it. 

Product Backlog 

A prioritized list of requirements with estimated times to turn them into completed 

product functionality. Estimates are more precise the higher an item is in the Product 

Backlog priority.. The list emerges, changing as business conditions or technology 

changes. 

Product Backlog Item 

Functional requirements, non-functional requirements, and issues, prioritized in order of 

importance to the business and dependencies and estimated. The precision of the estimate 

depends on the priority and granularity of the Product Backlog item, with the highest 

priority items that may be selected in the next Sprint being very granular and precise. 

Product Owner 

The person responsible for managing the Product Backlog so as to maximize the value of 

the project. The Product Owner is responsible for representing the interests of everyone 

with a stake in the project and its resulting product. 

Scrum 

Not an acronym, but mechanisms in the game of rugby for getting an out-of-play ball 

back into play. 

Scrum Master 

The person responsible for the Scrum process, its correct implementation, and the 

maximization of its benefits. 

Sprint Backlog 

A list of tasks that defines a Team’s work for a Sprint. The list emerges during the Sprint. 

Each task identifies those responsible for doing the work and the estimated amount of 

work remaining on the task on any given day during the Sprint. 
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Sprint Backlog Task 

One of the tasks that the Team or a Team member defines as required to turn committed 

Product Backlog items into system functionality. 

Sprint Planning meeting 

A one-day meeting time boxed to eight hours (for a four week Sprint) that initiates every 

Sprint. The meeting is divided into two four-hour segments, each also time boxed.. 

During the first four hours the Product Owner presents the highest priority Product 

Backlog to the team. The Team and Product Owner collaborate to help the Team 

determine how much Product Backlog it can turn into functionality during the upcoming 

Sprint. The Team commits to this at the end of the first four hours. During the second 

four hours of the meeting, the Team plans how it will meet this commitment by designing 

and then detailing its work as a plan in the Sprint Backlog. 

Sprint Retrospective meeting 

A time boxed three-hour meeting facilitated by the Scrum Master at which the complete 

Team discusses the just-concluded Sprint and determines what could be changed that 

might make the next Sprint more enjoyable or productive. 

Sprint Review meeting 

A time-boxed four hour meeting at the end of every Sprint where the Team collaborates 

with the Product Owner and stakeholders on what just happened in the Sprint. This 

usually starts with a demonstration of completed Product Backlog items, a discussion of 

opportunities, constraints and findings, and a discussion of what might be the best things 

to do next (potentially resulting in Product Backlog changes). Only completed product 

functionality can be demonstrated. 

Stakeholder 

Someone with an interest in the outcome of a project, either because they have funded it, 

will use it, or will be affected by it. 

Team 

A cross-functional group of people that is responsible for managing themselves to 

develop an increment of product every Sprint.  

Time box 

A period of time that cannot be exceeded and within which an event or meeting occurs. 

For example, a Daily Scrum meeting is time boxed at fifteen minutes and terminates at 

the end of fifteen minutes, regardless. For meetings, it might last shorter. For Sprints, it 

lasts exactly that length. 


